
Early-stage colorectal cancer detection using artificial intelligence  
and whole-genome sequencing of cell-free DNA 

BACKGROUND
• Despite population screening programs and availability of several  

stool-based, non-invasive screening methods, nearly 60% of colorectal 
cancer (CRC) cases are detected with regional or distant metastases  
(Siegel et al., 2018)

• Blood-based methods using cell-free DNA (cfDNA) are under development as 
an alternative to stool-based tests

• Early-stage detection of cancer using only tumor-derived mutations in cfDNA 
(i.e., circulating tumor DNA, or ctDNA) is challenging for practical, technical, 
and biological reasons, such as the small proportion of cfDNA derived from 
tumor tissue (i.e., tumor fraction, or ctDNA/cfDNA) in early-stage disease 
(Haque et al., 2017) 

• Using machine learning (ML) to discover signatures in cfDNA that may 
reflect both tumor and non-tumor (e.g., immune) contributions represents 
a promising direction for the early detection of cancer

• Confounders, including variation in preanalytical and analytical processes, 
can affect the performance of ML models, especially in retrospective studies, 
and must be controlled to limit bias and improve generalizability

OBJECTIVE
• As part of a program to develop a blood-based screening test for CRC, a 

machine learning approach for representing and learning associations 
between cfDNA profiles and cancer status was evaluated in a large cohort of 
non-cancer controls and early-stage CRC patients (predominantly stages I 
and II), with a focus on the importance of accounting for known confounding 
variables

 METHODS
• Sample collection: De-identified plasma samples were received from 

academic medical centers and commercial biobanks (Table 1)

• Whole-genome sequencing of cfDNA: cfDNA was isolated from  
250 µL of plasma and converted into Illumina-compatible libraries, which 
were sequenced to a minimum of 400 million reads

• Bioinformatics and feature generation: Reads aligning to annotated 
protein-coding genes were extracted, and read counts were normalized to 
account for variability in read depth, sequence-content bias, and technical 
batch effects (Pertea et al., 2018)

• Machine learning: ML models were trained using different cross-validation 
techniques including k-fold, k-batch, and balanced k-batch (Figures 2, 3)

Figure 1. Methods from sample processing to results
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Table 1. Clinical characteristics and demographics of patients with 
CRC and non-cancer controls

CRC
N=797

Control
N=456

Total Samples 
N=1253

Gender N (%)
Female 377 (47%) 279 (61%) 656 (52%)
Male 411 (52%) 122 (27%) 533 (43%)
Unknown 9 (1%) 55 (12%) 64 (5%)

Stage N (%)

N/A N/A

I 239 (30%)
II 417 (52%)
III 114 (14%)
IV 10 (1%)
Unknown 17 (2%)

Age (yrs)
Median (IQR) 69 (61-77) 59 (53-64) 65 (57-74)

Figure 2. Model training and cross-validation (CV) procedures
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All methods were trained on k-fold, and the best 
performing method was chosen to train models for the 
other cross-validation procedures.

Figure 3. Training schemas for k-fold, k-batch, and balanced k-batch
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Each square represents a single sample, with the fill color indicating class label (CRC or non-cancer control), the 
border color representing the institution of origin, and the number indicating processing batch.

RESULTS
Figure 4. Sensitivity by CRC stage in patients aged 50-84
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Classification performance for CRC within the intended-use age range (50-84) across all validation methods. 
Threshold for sensitivity was defined at 85% specificity in each test fold. N is number of samples for  
each stage. CI=95% bootstrap confidence interval.

• 82% of samples were from patients with early-stage CRC (stages I and II) 
• All validation methods achieved approximately equivalent sensitivity across 

stages I through III (based on confidence intervals). Stage IV cancer was 
always classified correctly

Figure 5. Sensitivity by tumor fraction in patients aged 50-84
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Classification performance for CRC within the intended-use age range (50-84) across all validation methods. 
Threshold for sensitivity was defined at 85% specificity in each test fold. N is number of CRC samples. Tumor 
fraction is the proportion of cfDNA derived from tumor tissue (i.e., ctDNA/cfDNA) and was estimated using IchorCNA 
(Adalsteinsson et al., 2017). CI=95% bootstrap confidence interval.

Figure 6. Non-linear relationship between total number of samples in 
training set and AUC in test set
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• Classifier performance continued to improve with the addition of more 
training samples

Table 2. CRC performance by cross-validation procedure in patients 
aged 50-84

Validation
Average Training 

Set Size (N)
Mean AUC 
(95% CI)

Mean Sensitivity at 85% 
Specificity (95% CI)

k-fold 1128 0.89 (0.87–0.91) 82% (78–85%)

k-batch 1128 0.89 (0.87–0.91) 80% (76–85%)

balanced 
k-batch 592 0.86 (0.83–0.89) 75% (68–81%)

AUC=area under the receiver operating characteristic curve; CI=95% bootstrap confidence interval.

• Batch-to-batch technical variability was evaluated using k-batch validation

• Institution-specific differences in population or sample handling were 
evaluated using balanced k-batch validation

• Sensitivity increased with increasing tumor fraction across all validation 
methods (Figure 5)

• AUC for IchorCNA-estimated tumor fraction alone was 0.63, which was lower 
than results from the ML model under any cross-validation scheme (Table 2)

CONCLUSIONS
• A prototype blood-based CRC screening test using cfDNA and 

machine learning achieved high sensitivity and specificity in a 
predominantly early-stage CRC cohort (stages I and II)

• Classifier performance suggests contributions from both tumor and 
non-tumor (e.g., immune) derived signals

• Assessing genome-wide cfDNA profiles at moderate depth of 
coverage enables the use of low-volume plasma samples 

• Cross-validation methods highlighted the importance of performing 
similar confounder analyses for retrospective (and prospective) studies

• Prospective validation of a similar machine learning method using 
cfDNA is underway (NCT03688906), along with research evaluating 
the potential of a multi-analyte approach that integrates other cell-
free, blood-based analytes (e.g., proteins) to improve performance
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