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The liquid in “liquid biopsy”

Image credit: KnuteKnudsen, Wikipedia

The “freenome”: small molecules, macromolecules: 
proteins, RNAs, circulating cell-free DNA (cfDNA).

cfDNA arises from many different tissues in the 
body. Have known for >20 years that some amount 
of cfDNA in cancer patients comes from the tumor: 
circulating tumor DNA (ctDNA).

Today’s great hope: using ctDNA to predict 
treatment, response, and existence of cancer.



Measurements of circulating tumor DNA 
(ctDNA) will not solve the clinical 

problem of detecting early stage cancers.

but integrating multi-analyte signals beyond ctDNA 
using modern machine learning will.

My claim:



About Me

Chief Scientific Officer at Freenome

Formerly VP scientific affairs at 
Counsyl: early tech dev and research 
in medical and population genetics, 
cancer genetics, assay development.

PhD CS Stanford: large-scale machine 
learning for drug discovery.



About Freenome

Early-stage startup based in South San 
Francisco, working on early diagnosis and 
early intervention in cancer.

Our technical vision:

The cell-free “Freenome” has significant 
information beyond sequence variation. 
Decoding this information will require a 
joint effort in assay development, 
computational biology, and machine 
learning, with significant advances to be 
made in all three.
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People at Freenome

Total financing: Andreessen 
Horowitz, Google Ventures, Polaris, 
Founders Fund, and others

Clinical partners: Multi-cancer 
groups sharing cohorts for sample 
collection + collabs for publication

Paid pharma partners: 
Including Fortune 500 biopharma 
clients



Outline

I
How do tumor fraction, cfDNA concentration, and heterogeneity come together to 

define the limitations and costs of mutation-detection liquid biopsy?

II
Where can we find biological opportunities to go beyond variant

calling in the development of cancer early detection? 

III
What are the statistical opportunities that may enable us to avoid

the historical challenges of biomarker discovery?



I: Statistical Limitations of Liquid Biopsy



Detecting cancer by flipping coins

With a fair coin, I expect one 
heads if I flip twice.

But if I’m unlucky, I may need 
more. With >95% probability, I will 
see at least one if I flip 8 times:

If my coin is unfair, I might need 
to flip many more times! If p=0.10, 
I need to flip thirty times to see at 
least one heads with >95% conf!

Can treat cfDNA molecules as coins: “heads” for molecules w/a tumor mutation.



Mutation detection as a binomial process

Aravanis AM et al, Cell 2017

Given N unique molecules at a 
given site and p probability of any 
given molecule being tumor 
derived, sensitivity = the binomial 
probability of seeing at least one 
tumor derived molecule.

As VAF/TF drops, need much more 
depth to recover high sensitivity.

0.01% has been claimed as the VAF 
upper bound for early detection.



Real world VAF is <0.1% in early-stage cancer

30-50% of early-stage patients have max VAF < 0.1%; binomial 
bound likely reflects what we see in experiments; the deeper 
you sequence, the more you find. Phallen J et al. Sci Transl Med 2017



[cfDNA]: ~1 ng/mL blood

We’ve so far assumed that we could 
sequence arbitrarily deeply, but we need 
to have unique reads, which imposes 
input requirements.

In a production test, we care more about 
the tails of the distribution than the 
median: can’t fail 50% of your samples 
for insufficient input!

95% of healthy indivs have >= 2.3 ng 
cfDNA/mL plasma = ~1.2 ng/mL blood.

Phallen J et al Sci Transl Med 2017



ctDNA is too rare in early-stage cancer

95% of patients have >= 2.3 ng cfDNA 
per mL plasma = ~1.2 ng/mL blood.

In order to have 95% sensitivity at 0.01% 
MAF, we need 30,000 unique genomic 
equivalents = 90ng.

With 100% process efficiency, we’d 
need a 75mL blood draw; with a more 
realistic 25-50% efficiency, it’s 
150-300mL!

Phallen J et al Sci Transl Med 2017



Idea: Aggregate TF over a larger ROI

We assumed in the previous section that there was exactly one mutation we 
needed to detect from the tumor, at a particular MAF. But tumors have many 
mutations, sporadic and recurrent; what if it were OK to detect any of them?

Kandoth C et al, Nature 2013
Ciriello G et al. Nat Genet 2013



Somatic heterogeneity in cancer drivers is pervasive

Deep sequencing reveals significant somatic heterogeneity present in normal 
tissue and in plasma of healthy individuals. There is significant overlap between 
driver gene mutations in cancer and somatic variants found in healthy individuals:

This poses a filtering/PPV problem for mutation detection.

Genovese G et al. NEJM 2014
Phallen J et al. Sci Transl Med 2017

Razavi P et al. ASCO 2017
Martincorena I et al. Science 2015

Age VAF, Clonal 
Hematopoiesis

Fraction of 
population

>65yr > 10% 10%

Avg 44yr 0.16-5.28% 16%

<50yr >=0.1% 10%

>70yr >=0.1% ~40%

Clonal landscape of 1 sq cm of 
sun-exposed eyelid skin.



Aggregating VAF: ↓ input, ↑ sequencing

Impact: can treat vars as indistinguishable in 
the binomial sampling model, so 

effective VAF <= Σ VAFi

→ Reduced input requirement
     (we use more of each genome)

But: seq bandwidth increases; reads from 
less-altered regions are less powerful.

→ Increased sequencing requirement

Newman AM et al Nat Med 2014



NGS error correction imposes a depth penalty

Another hitch: NGS reads have an error rate 
around 0.1%-0.5%, which is >= the mutation 
rate we want to detect.

A variety of methods (SSCS, DCS, iDES, 
TEC-Seq) can correct these errors through 
incorporation of molecular barcodes and 
oversampling: trading depth for error rate.

In real-world use, error correction requires 
5-10x fold increase in read depth: 
30,000x req’d depth = 150-300Kx raw depth Schmitt MW et al. PNAS 2012

Newman AM et al. Nat Biotech 2016
Phallen J et al. Sci Transl Med 2017



ctDNA-based detection is clinically insufficient

Phallen J et al, Sci Transl Med 2017
Razavi P et al. ASCO 2017

 

Cancer types Staging Samples Panel Avg Raw Depth Avg Eff Depth Clin. Sens.

Breast, Lung,
Colorectal,
Ovarian

I / II N=138 81kb 38,589x 6,182x 59-71%

Breast, Lung,
Prostate

metastatic N=124 2100kb 60,000x 3,000-4,000x 89%



ctDNA-based detection is clinically insufficient

Even large panels, with moderately high depth, on 
metastatic patients struggle to exceed the >90% 
sensitivity that existing screens achieve in early stage.

Phallen J et al, Sci Transl Med 2017
Razavi P et al. ASCO 2017

Menon U et al. Lancet Oncol 2009
Imperiale TF et al. NEJM 2014

Cancer types Staging Samples Panel Avg Raw Depth Avg Eff Depth Clin. Sens.

Breast, Lung,
Colorectal,
Ovarian

I / II N=138 81kb 38,589x 6,182x 59-71%

Breast, Lung,
Prostate

metastatic N=124 2100kb 60,000x 3,000-4,000x 89%

Non-cfDNA Staging TP+FN / Total Modality FN Set Clin. Sens.

Ovarian 48% I/II 42+5 / 50,078 CA-125 + ultrasound 1yr followup 89.4%

Colorectal 93% I/II/III 60+5 / 9,989 FIT + DNA Colonoscopy 92.3%



Summary: early detection by mutation detection
Desiderata and assumptions:
● <=5% of samples fail test for insufficient input
● 95% sensitivity to detect a cancer-derived allele
● 50% process efficiency tube->sequencer; 5x oversampling for error corr.
● 100% on-target rate for capture
● “$1000 genome” sequencing costs: $1000 / 30x3Gbp
● Other reagents, labor, etc. cost $0.

VAF 
95% 
sens

Corrected 
depth

Raw 
depth

Input vol. 
(blood)

TEC-Seq
58 genes
81kb

GRAIL
508 genes
2,000Kb

WES
~20k genes
50,000Kb

Tumor LB 0.1% 3,000x 15,000x 15mL $14 $340 $8,300

Early detection 0.01% 30,000x 150,000x 150mL $140 $3400 $83,000



II: ...now what?
(Biological opportunities)



Concentration vs quantity

The fundamental limitation affecting ctDNA for early detection is quantity: at 0.01% 
concentration, there aren’t enough copies of the genome present per mL to be 
detectable.

Will highlight two options today:

1. Find tumor-derived material with count > 0 even at concentration <0.01%
2. Find informative material in the non-tumor-derived 99.99%



Tumor-derived macromolecules

DNA only has CN~=2 in cells. Other macromolecules have much higher copy 
number, so they may have >0 count even in small, low-concentration samples.

Combining ctDNA (KRAS 2-codon) assay
with quantification of 1-4 proteins boosted
sensitivity in early stage and small 
pancreatic tumors, while maintaining
specificity (1/182 FPR).

Cohen JD et al. PNAS AOP Sep 2017 



Non-tumor-derived material

Immune surveillance is involved in carcinogenesis and early clearing of cancer.

Macromolecules: differential cytokine and
antibody production are observed in cancer
vs healthy individuals.

Cytology: Different immune cell populations are
observed in different tumor types, with an effect
on cancer prognosis.

Hanash SM, Pitteri SJ, Faca VM. Nature 2008.
Gentles AJ et al. Nat Med 2015.



Integrative analysis for early detection

ctDNA alone provides neither the sensitivity 
nor specificity to make a sufficient early 
detection assay.

But there is good literature evidence to suggest 
that combining approaches can boost the 
performance of a detection protocol to useful 
levels.

xkcd #1831



Biomarker discovery has not been easy

This is highly multiparametric and relies on statistical recovery of signals from a 
high dimensional space. The field is littered with failures from confounders: stress 
response, genotype, circadian rhythms, collection conditions (anesthesia), etc.

Cohen JD et al. PNAS AOP Sep 2017
Suhre K et al. Nat Comm 2017.

Example: Genotype strongly affects 
levels of circulating plasma proteins, 
including those used as biomarkers:



III: ...so really, now what?
(Statistical opportunities)



High dimensional modeling: beyond n vs p

The fundamental limitation of statistical modeling is one of information flow:

1. How many bits of (conditional) information are present in our source data?
2. How many bits needed to discover the label-conditional structure in our data?
3. How many bits needed to classify instances in our target classes?

Older biomarker discovery techniques constrained by (1) and (2): enough apparent 
information in the samples to classify them, but not enough to factor out the hidden 
confounders.



Mo’ data, mo’ problems

New methods offer the potential to secure much larger amounts of information per 
sample, but simply acquiring more data is not a panacea:

- Early GWAS: failure to account for ancestry confounding
- Early proteomics biomarkers: failure to account for sample acquisition biases

The great challenge is (2): building models with the appropriate factorization to 
separate relevant confounders. Structure learning requires much more data than 
just predicting labels directly!

Typical practice: specify confounders up front, and train filters or linear models to 
remove biases explicitly.



A simple example: variant calling

Variant callers traditionally built with a variety of custom-trained filters: sequence 
context, allele balance, strand bias, etc.

DeepVariant: automatically trained convolutional neural net on NA12878 platinum 
genome outperformed hand-tuned GATK HaplotypeCaller

Modern methods have potential for
automatic discovery of conditional
structure in complicated genomics
data.

Poplin R et al. bioRxiv 092890 (2016).



When adding even mo’ problems can help

Variant calling is unique: enormous amounts of training/validation data, relatively 
simple conditional dependence structure.

Biomarker discovery involves complex confounders, small N, large data per sample, 
and relatively few labels. Fundamental challenge: we are constrained by the 
information content in our label set, not our feature set.

Idea: use external data sets and problems to provide the information for learning 
structure; save label bits for our own problem: multi-task and transfer learning.



Vision: transfer learning for biomarker discovery

Prior limitation was a lack of total label data to train structure in statistical models. 
Newer methods allow us to integrate large-scale external data sets with 
high-dimensional, multi-parametric data extracted from newer assay technology.

Example: expression and genotype data from cfDNA. Ulz P et al. Nat Genet 2016
Snyder MW et al. Cell 2016



Conclusions



Summary
1. Variant-calling based early detection has serious limitations on sensitivity:

a. Possibly insufficient cfDNA for it to work at all.
b. Multiple OOM in sequencing cost away from commercial viability.
c. Significant specificity challenges from somatic heterogeneity.

2. Markers beyond ctDNA have potential but pose daunting statistical 
challenges.

3. Advances in multi-task and transfer learning may offer a route to 
statistically robust biomarker development.



A vision for the next 5 years
1. Large, publicly-available reference compendia of cell-, tissue-, and 

population-specific genomic information enable large-scale machine 
learning of the causal structure behind cancer genesis, maintenance, and 
clearance.

2. ML-derived methods enable point-in-time population screening with 
greater accuracy and adherence for conditions with existing screens, and 
meet the unmet need in unsolved conditions.

3. Repeat longitudinal testing in the general population enables the 
calibration of tests to individual variability, minimizing overtreatment and 
informing discovery of fundamental biology.
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