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Takeaways before you tune out

« What makes (bio)chemistry a hard ML domain?
« Advances in self-supervision and modeling improving chemistry representations.

« High-dimensional data from biology improving dense chemical data for ML.

&J Recursion



RxRx3: Leading the field in open science at rxrx.ai/rxrx3

Genetics and chemistry: two great flavors that go great together

RxRocs: #of Samples

 Images, metadata, and DL embeddings Bio/Chem Phenomic Maps
of knockouts of ~17K genes* + ~1700 ~100 TB- mmm
SMs @ multiple concentrations . s p— 823,438
 The largest publicly-released data set of " Autonomous Driving
perturbative cellular imaging, all ~1-5TB - Waymo Open Dataset 2018 ~105,000
generated at a single site with a nuScenes 2018 1000

consistent pI’OtOCO|. Image/Object recognition

« Genetic and chemical perturbations in a 10GB-~T  mageNet (21K) 2009 14M
shared embedding space enabling B
inference of mechanism and phenotype.

- COCO 2014 330,000

* Mostly blinded, but let’s talk if you're interested... .
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Let’'s turn the clock back to 2019.

The last time | spoke at CUP was in 2019, explaining
why ML in chemistry (and biology) is challenging...
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Why is ML in chemistry difficult?

« Allwe wantin ML is, given x and y input pairs, to identify a function f such that
f(x) is “usually close to” y.

e Tricks in machine learning are usually of the form:
 Find a new family of fthat is predictive.
» Find a new optimization algorithm over f
o Get "better” forms of x (ie, ones more suited to your f)
 Get more (xy) pairs.

« Chemistry ML is hard because:

« itis hard to define chemical representations that are highly informative and suited for
particular predictive functions.

 The available data are sparse (over molecules, and over targets).
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Could we solve the sparse-data-matrix problem in
chemistry by taking cells, knocking out each gene
in the genome, and individually doing 100,000s of

molecules at multiple concentrations, and taking
some pictures?

...no, really. What if we did?



At Recursion, we have individually knocked out
(almost) every gene in the genome in primary human
cells, imaged them, and transformed those images
through proprietary deep learning models to put them
in a “relatable”, biologically meaningful space in which
we can identify similar or dissimilar perturbations.
This is what we call a “map of biology”.

In this illustration, I've queried the Human Phenotype
Ontology for genes related to “breast cancer”, giving
us the genes in green arrayed around the circle.
Yellow edges represent those associations in HPO.

Green edges between genes represent significant
similarity associations that we observe between pairs
of genes in our maps.
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The associations seen in Recursion’s maps
immediately recapitulate decades of cancer biology,
with the genes in the BRCA complex immediately
visible as a cluster, as well as the Ras/Raf, Her2, and

PI3K pathways.
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An important feature of the Recursion platform and
our maps is that we can profile not just genetic
knockouts, but also pharmacological perturbations
(small and large molecules) in concentration-
response.

Here, I've zoomed into the Ras/Raf cluster, and
added orange nodes representing ground truth small
molecule inhibitors of a number of genes in the
pathway. We see the relationships that we would
expect to see show up — inhibitors whose effects look
phenotypically similar to knockout of their
corresponding genes — giving us confidence that we
can relate genetic and chemical perturbations to one
another.
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Of course, the platform would not be so interesting if
all it could do was recapitulate known biology. Here,
I've added in a number of unlabeled orange nodes
corresponding to NCE starting points from our
screening library — demonstrating that even in the
absence of known ground truth, the Recursion
“mapping and navigating” approach can find starting
material to initiate programs against a variety of
interesting potential targets.
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What I've shown is a very tiny slice of the entire
content of our maps. There are not enough pixels on
your screen to represent all of the trillions of inferred
relationships in our maps, but at right | show a
schematic view of the breadth of what we are able to
see across the genome.
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Traditional
target-based screens

In a typical target-based screen, you may run an
entire HTS deck against a single target, getting
information for all compounds against that one
protein...but no information at all about other targets.
For those, you would have to explicitly set up
counterscreens, increasing the time and cost of
screening, and requiring advance knowledge of what
to counterscreen. Furthermore, negatives from this
screen are essentially “exhaust” — useless waste of
the screen.

1T million
compounds

A single
target

&J Recursion
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Recursion is generating
exponentially more insights

By contrast, in our approach, when we screen a
single compound, we are able to relate it to each
gene in the human genome as well as every other
compound we have screened — turning past
screening data from “exhaust” into fuel for our
discovery engine, and enabling us to see off-target or
polypharmacological activity of compounds
immediately and continuously through hit-to-lead and
LO.

1T million
compounds
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Maps of Biology: high-dimensional genome-wide screening

One compound, biological similarity to all targets

* Recursion maps of biology allow the
evaluation of concentration-response
activity of each compound against a//
gene knockouts in one assay, rather
than one assay per target.
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Maps of Biology: primary and alternative target selection

Recursion “Target Gamma” program for HR-proficient ovarian cancer

CDK12 has been advanced as a target
to improve response in the HR-
proficient setting.

Selective inhibition of CDK12 over
other CDKs, especially CDK13, is very
challenging.

Recursion maps of biology show that
Inhibition of target RBM39 (e.g., with
REC-65029) may mimic inhibition of
CDK12 while mitigating toxicity due to
CDK13 inhibition.

REC-65029

%
- CDK12
Similar
l RBM39
2.5uM |
1.0uM
. . REC-65029
0.25uM
Opposite
0.1uM

. CDK13
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Enabling image-based maps of
biology with ML/AI



Similarity is the fundamental property of maps

In order to build a map, we want to know
how similar or dissimilar two biological
states are.

We can intuitively think of this in a
perturbative context: two perturbations
are similar if they make the cell “do the
same thing”, and opposite if one reverses
the effect of the other.

3939 (p) 71462 Mitogens
Inactivem —— (insilin)

T< Akt «— PI3K
Tumor
suppressor rapamycin
complex
Active 5
Nutrients/Energy
(amino acids; ATP) ’ mTOR

- TSC2/tuberin

. TSC1/hamartin

- MTOR
Recursion

Tee AR et al. PNAS 2002




Imaging is distal, data-rich, and cheap

Disease Model X Healthy control

« Morphology is downstream of RNA and
protein activity — and may observe
effects molecular assays would not.

* Images can be super cheap.

« Recursion uses a standardized assay
we call “phenomics”, staining six
common cellular substructures.

&J Recursion

*Note: images shown above depict a disease model with visible phenotype for illustrative purposes only; primary utility of Recursion platform is to readily distinguish non-visible phenotypes
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Al/ML turns unstructured images into computable data

Computability is the fundamental
challenge of mapping with images.

DL algorithms can extract biologically
meaningful representations of images
and automatically correct issues like
batch effect.

These models have shown the power
to accelerate development across cell
types, and get better with more data.
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Standardized imaging assays capture broad swaths of biology

Phenomics is an unexpectedly
powerful standard assay capable of
sensitive detection and quantification
across 100s-1000s of mechanisms.
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Molecular Foundation Models for
Chemical Representations



Current chemical representations are unsatisfactory
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Fingerprints
Fixed-length, hand-tuned
vector representations.

Strong baselines, but
interpolate poorly outside
training, and incompletely
represent molecules.
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SMILES

String representations
convenient for language
models, but nonunique:
many SMILES for the same
molecule, and similar

molecules can have very
different SMILES.

Graphs

Natural representations of
molecules useful for graph
neural networks, but typical
graph models fail to
aggregate information from
distant parts of a molecule.

MolE adapts modern large language models to train a superior molecular representation space.

&J Recursion
Méndez-Lucio O, Nicolaou C, Earnshaw B. arXiv:2211.02657v1



https://arxiv.org/abs/2211.02657

MolE: A Molecular Foundation Model for Drug Discovery

Chemistry problems are categorically
poor in labeled data.

MolE adapts the DeBERTa Transformer
architecture to represent both content
and relative graph position to pre-train
models that both “understand chemistry”
and “understand biology”.

Combining self-supervision and fully-
supervised learning enables effective
few-shot learning -- only limited fine-
tuning needed on particular target
problems.
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https://arxiv.org/abs/2211.02657

MolE is a top performer on the TDC ADMET benchmarks

MolE TDC Rank MolE TDC Rank
 On the 22 Therapeutic Data Commons Lipophil 1 Plasma 1
ADMET prediction tasks: MolE binding
achieves #1 or #2 performance on the Caco?2 2 [P |vDss 1
leaderboard on 14/22 tasks, including A Solubility 3 BBB 2
all distribution and metabolism Bioavail. 5 £1/2 1
(CYP2C9/2D6/3A4) tasks, and #1 in Pgp 5 |E |cLmic |1
9/22. HIA 6 Cl_hep 6
2C9 inhibition |1 LD50 1
2C9 substrate |1 T hERG 4
2D6 inhibition | 2 DILI 5
M 2D6 substrate |1 Ames 8
3A4 inhibition |2
3A4 substrate |2 () Recursion

Méndez-Lucio O, Nicolaou C, Earnshaw B. arXiv:2211.02657v1



https://arxiv.org/abs/2211.02657

RxRx3: Enabling ML research in
phenomics



RxRx3: Leading the field in open science

rxrx.ai/rxrx3

RORS: #of Samples

« Images, metadata, and DL embeddings Bio/Chem Phenomic Maps
of knockouts of ~17K genes + ~1700 ~100 TB- mmm
SMs @ multiple concentrations . T 5003 823,438

« The largest publicly-released data set " Autonomous Driving
of perturbative cellular imaging, all ~1-5TB -  Waymo Open Dataset 2018 105,000
generated at a single site with a

. nuScenes 2018 1000
consistent protocol. -

Image/Object recognition

i i : 10GB-~1 | Net (21k 2009 14M
Historically, datasets have driven TB MageNErtatk)

advances in machine learning technology.

- COCO 2014 330,000
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MolRec: A keyhole view into the Recursion Map of Biology

rxrx.ai/rxrx3

MolRec shows off the ability to relate
small molecules to each other and to gene
knockouts, with the suite of analyses you  cicountmpacg | st
might expect to want in driving a
discovery program — cellular toxicity, on-
and off-target similarity, and compound
similarity.

nt

Cell Count Perce
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RxRx3 and MolRec: blinded research data sets

rxrx.aifrxrx3

RxRx3 and MolRec are partially blinded.
We expect to unblind more of these over

t| me. Top Statistically Significant Similars Heatmap I
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RxRx3 and MolRec: blinded research data sets

rxrx.aifrxrx3

RxRx3 and MolRec are partially blinded.
We expect to unblind more of these over

t| me. Top Statistically Significa

ADD,TOCART?
/8

But you know, if you want to pay us
some money to unblind it, let’s talk.

For just $0.99 more, I'll personally
hand-deliver the hard drives.

§J Recursion
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Conclusion



Biology is the next frontier for chemistry (learning)

« Standardized cellular imaging (phenomics) is incredibly data-rich and scalable; DL-
learned features enable high-dimensional, dense data matrices for chemistry

« Self-supervision and biological pretraining enables DL methods to create chemical
representations that power few-shot learners for challenging biological properties

« Recursion has released MolRec to provide a view into the power of mapping and
navigating, and RxRx3 to advance research on machine learning and cellular imaging.

Questions?

iInfo@rxrx.ai for questions on RxRx3 and MolRec

@ImranSHaque on Twitter or @ihaque@genomic.social on Mastodon
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Questions?
info@rxrx.ai for questions on RxRx3 and MolRec

@ImranSHaque on Twitter or @ihagque@genomic.social on Mastodon
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We are hiring!

recursion.com/careers

Computational chemistry, computational biology, machine learning,
software engineering, and more!
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