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Conclusions

e Future HPC will be driven by heterogeneous
architectures and (even more) massive parallelism

e Applications need both systems- and algorithms-level
redesign to be effective on next-generation HPC

e Our work shows a possible direction: GPU rewrites
and entirely new algorithms driving cheminformatics
and physical simulation



E. coli protein ???




E. coli penicillin binding
protein 5

Which small
molecules will

a given protein
bind?




What do these compounds do?
- inhibit penicillin binding proteins?
- kill bacteria?

- kill viruses?
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What do these compounds do?
- inhibit penicillin binding proteins?
- kill bacteria?

- kill viruses?
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bisphenol A

estrogen mimic

methicillin
beta-lactam antibiotic
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clavulanic acid

beta-lactamase inhibitor

zidovudine

HIV RT inhibitor
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levofloxacin

DNA gyrase inhibitor

penicillin G

beta-lactam antibiotic
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Chemical Biology - Methods

e Experimental assays: expensive, labor-
Intensive

e Computation
— Physical simulation



Physical Simulation

e MD = Numerical
Integration of Newton’s
equation

initialize positions/velocities

e Dominant simulation
method in computational
biology and chemistry calculate force F=- VU H

(

e Can work with detailed (eg Repeat until

atomistic) or coarse apply thermostat/barostat desired simulation
length (At = 2fs)

grained models

e Detailed models needed
for quantitative
comparison to experiment

update positions/velocities




Physical Simulation - Timescales

Isomer- Water Helix Fast Slow
ization dynamics forms folding conf change
105 1012 107 106 103 100
femto pico nano micro milli seconds
MD long where we’d
step MD run love to be

~age of
the
earth

3,000 3,000,000
years years




Chemical Biology - Methods

e Experimental assays: expensive, labor-
Intensive

e Computation
— Physical simulation
— Data mining



Chemical Databases

e A modern trend — giant public databases of chemical
assay data

— NCBI PubChem: 34,340 assays; 965,730 compounds
— EBI ChEMBLdb: 8,054 targets; 600,625 compounds

e Companies releasing their internal databases

— GlaxoSmithKline: Gamo et al. Thousands of chemical
starting points for antimalarial lead identification. Nature
465, 305-310 (20 May 2010).

e Let’s learn from this data and make predictions —
chemical informatics or data mining!



The Cheminformatics Gap

“ Existing Analyses  ® Existing Databases
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Computational analysis has not kept up with growth in
chemical databases: the cheminformatics gap.

Molecules




Not just a linear gap

e Chemical similarity comparison is a common
bottleneck in chemical algorithms

e How many similarities for N molecules?
— Virtual screening, k-means clustering: O(N)

— Hierarchical clustering, network analysis:  O(N?)
— LM hierarchical: O(N3)

The gap is not just 10x-100x...
more like 100x — 1 million x!



The Computational Barrier

For both physical simulation and data mining, we’re
about 1,000,000x short of where we’d like to be.
What can we do?
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Why GPUs?

e GPUs have excellent
1,100 peak throughput and

efficiency
825

o BUT

— Hard to program

— Require inherent data
parallelism

— Often require complete
Peak GFLOPS GFLOPS/W (x100)

B Intsl Corei7 975 rewrite
B NVIDIA GeForce GTX 285 — Questionable reliability

550

275




What’s in a GPU?
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NVIDIA GF100 AMD Cypress
(GeForce GTX 480) (Radeon HD 5870)



Physical Simulation

e Molecular dynamics is
highly parallel

initialize positions/velocities

e Synchronization
el Goies F = - U h
overhead decreases as calcHiate TOrce

system size increases (

Repeat until

apply thermostat/barostat desired simulation
length (At = 2fs)

e Excellent fit for GPU
acceleration update positions/velocities




(Beauchamp, OpenMM team, Pande)

OpenMM - High Performance MD

GFLOP/s GFLOP/s

*
Molecule #atoms ns/day speedup (GPU) (x86)

fip35 544 576 128x 311 657
villin 582 529 136x 328 692
lambda 1254 202 255x 547 1153

a-spectrin 5078 17 735x 805 1702

* GTX280-OpenMM vs Core 2 Duo 3GHz-AMBER (one core);

Fermi is ~2x faster!
http://simtk.org/home/openmm

Friedrichs MS et al. J. Comput. Chem., 2009, 30(6), pp 864-872
Luttman E et al. J. Comput. Chem., 2009, 30(2), pp 268-274



3 Views of Chemical Similarity

Alanine Methionine

e 2D substructure:

e 3D shape:

e 3D chemotype:




GPU-Accelerated 3D Similarity

"= Molecular overlay optimization: used to find new
active compounds from a database given one active
“guery” molecule

" Complexity O(MN): double-loop over all atom pairs
= DB =~10M mol.; CPU = 100/sec = ~2 days/query
" Use GPU to exploit parallelism of problem.

http://simtk.org/home/paper

Haque IS and Pande VS. J. Comput. Chem., 2010, 31(1), pp 117-132
Haque IS and Pande VS. in GPU Computing Gems, vol 1. 2010



PAPER or PLASTIC, sir?

e Use GPUs to accelerate 3D shape-only (PAPER) or
shape+color (PLASTIC) comparison: 100x speedup

=®=Small (10 atoms) Medium (22 atoms) == Large (44 atoms)
120
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Speedup factor versus OpenEye ROCS (Exact mode)
(Core i7-920)

1 10 100 1000

Simultaneous molecules/optimization (GeForce GTX 480)

e PLASTIC: 15000 alignments/sec/GPU http://simk.org/home/paper

Haque IS and Pande VS. J. Comput. Chem., 2010, 31(1), pp 117-132
Haque IS and Pande VS. in GPU Computing Gems, vol 1. 2010



The Computational Barrier

GPUs get us a factor 100-1000x. Problem solved?
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Systems work is just the beginning — we also need
new algorithms to bridge the rest of the gap. These
algorithms will rely on domain knowledge.



Cheminformatics: a storage challenge

e Speeding up a O(N?) algo 100x is not enough:

Problem size CPU time Storage needed
10 mols 1ms 1 kB
10K mols 1 min 1 GB
100K mols 1 day 1TB
10M mols 3yr 1PB
1B mols 30K yr 10K PB

e Computing on existing-scale datasets requires
entire datacenters’ worth of storage.



A Modest Proposal

e Let’s calculate all the pairwise similarities for
compounds in PubChem3D (N = 17M) based on 3D
shape and 2D chemical similarity

e Using CPUs

— 3D: OpenEye ROCS: 150/sec/core = 30,000 cpu-years
1 PB for matrix

e Add GPUs:

— 3D: PAPER: 15K/sec/gpu = 300 gpu-years
Still 1 PB disk



SCISSORS: Math for Fun and Profit

e Many molecular similarity methods report similarity
as a Tanimoto score

e How can we use the mathematical structure of
Tanimotos to gain insight into the metrics and
calculate them faster?

Classical vector Tanimoto returns value (A,_ B)

in [-1/3, 1] for a pair of vectors A, B in Tap = <A,_ A) + <B’ B> _ <A? B>

terms of their inner products

Tanimoto equation can be rearranged to Tag
get inner product in terms of Tanimoto <A: B> — 1+ T4 ((A, A> + <B= B>)
and vector magnitudes B

Haque IS and Pande VS. J. Chem. Inf. Model., 2010 50(6), pp1075-1088.



SCISSORS: Derivation

Assume molecules can be represented as vectors in RN
Simple assumptions on <A,A> and <B,B> get us <A,B>

2T AR
1+ Tap

<A7 B> —

Given a matrix G of inner products, want matrix M with
molecule vectors along rows

MM?T =G
G is real-symmetric, so use eigenvalue decomposition
G=MM"=VvDV"
M =VDz

Haque IS and Pande VS. J. Chem. Inf. Model., 2010 50(6), pp1075-1088.



SCISSORS: The key

e Select a small number k of molecules (k << N) to act as
a “basis set”

e Do all-pairs comparison on basis set and decompose to
molecule matrix M

e For each new “library” molecule x, run slow method
only against basis set. Place inner products in a vector
and solve for vector rep of x by least-squares:

Mz =T

e All-pairs: now only O(kN) slow computations!

Haque IS and Pande VS. J. Chem. Inf. Model., 2010 50(6), pp1075-1088.



Hardly Even a Request...

e 3D: Using PAPER+SCISSORS (basis size=2700)
17M * 2700 / 15000 = 35 gpu-day +
17M *17M /600M = 5 gpu-day

274,000x speedup (vs 30 000 cpu-yr)

e Storage: 17GB for SCISSORS
33,000 x reduction

e Computations that required all of FAH can now be
done on a single (well-equipped) desktop



Scalability and Resilience

e Proposed exascale initiative roadmap suggests
dramatically higher concurrency levels

2009 2011 2015 2018
FLOP/s 2 Peta 20 Peta 200 Peta 1000 Peta
Total 225,000 |3,200,000 |50,000,000 |1,000,000,000
concurrency
MTTI Days Days Days O(1 day)

e FAH data corroborate short MTTI for new GPU archs.

e Need scalable, resilient algorithms for physical sim

C Engelmann, Oak Ridge Natl. Lab
Haque IS and Pande VS. Proc. CCGrid 2010.



Limitations of traditional parallel MD

e Parallelism by spatial decomposition
— each CPU gets assigned atoms 0 W
— calculates the force for “its” atoms ke
— communication between boxes 0%

e Challenge /

— how to break up the problem for
billions of processors when you only
have millions of atoms?

— What do you do when you only have
thousands?!?!1?

figure from http://www.ks.uiuc.edu/Research/Algorithms/

e What about scaling to billions of
processors?

— can’t have # processors > # atoms

— machine may not even run long
enough to checkpoint/restart

r

Anton from D. E. Shaw




How to think of MD simulations

EQETTTTTTTOT

a0

it]

20

—eb o b b b b e b er g

=50

—40

=30

=20 =10

YES!

0

10

20

VOYAGER 1

VOYAGER 2

Launch Launch VOYAGER 2
5 Sept 77 20 Aug 77
Neptune
25 Aug 89
Jupiter
Uranus
" 24 lan 86
Jupiter
9 July 79
12 Nov 80 VOYAGER 1

25 Aug 81

No



http://simtk.org/home/msmbuilder

A statistical approach to simulation

1. Sample metastable states:
automatic algorithms to adaptively sample
and identify metastable states
via a kinetic clustering mechanism 3 helix bundle

(avoid one/low dimensional R.C.’s)

2. Build transition matrix: / \ [ By
use MD to sample transition probabilities ko
(ideally adaptively -- which allows MSMs to \‘ :
be more efficient than very long runs) en1 kyy
3. Use transition matrix: | fu ke - M
transition matrix contains everything to ka /ﬁw/w o J‘
predict structure, thermodynamics, and :
kinetics (built-in analysis via lumped MSM’s) L 1 by ]

also see the work of:  Caflisch, Chodera, Deuflhard, Dill, Hummer,
Noé, Pande, Pitera, Singhal-Hinrichs, Roux, Schiitte, Swope, Weber




(Bowman, Pande)

Shorter trajectories can be more efficient

Tests of a o g e e e

linear network

simple,
uncoupled

Trajectory Length (10° steps)

fully uncoupled trajectories
0.2 hit a limit: need to be long
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(Bowman, Pande)

Shorter trajectories can be more efficient

Trajectory Length (10° steps)

Tests of a o g 9 e e @ red=poor

linear network

sampling

simple, 10°

uncoupled adaptive

10
. 10-2

1103

10+

fully uncoupled trajectories
0.2 hit a limit: need to be long

0 100 200 300 400 500 0 100 200 300 400 500 blue=igeal
. . li
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(Bowman, Pande)
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http://simtk.org/home/msmbuilder (Singhal, Bowman, Haque, Pande)

Adaptive Sampling — Parallel + Resilient

wall clock

(~day)

cluster cluster data into microstates
(~hour)

cluster

p
~hour) lump microstates into macrostates Repeat until desired
~hour

uncertainty.

4 Can overlap cluster
calculate state’s contribution to uncertainty steps with FAH!

cluster
(*minute)

~dav)

. Loosely-coupled parallelism



http://simtk.org/home/msmbuilder (Singhal, Bowman, Haque, Pande)

Adaptive Sampling — Parallel + Resilient

. Loosely-coupled parallelism .Tightly-coupled parallelism




http://folding.stanford.edu (Pande Group)

Folding@home — Parallel + Resilient

. Loosely-coupled parallelism OTightIy-coupIed parallelism
ﬁ Assignment Server |Folding@home Totals:
(assigns nodes to ~ 400,000 hodes

CPL; ;g;r;g ; work servers) 6.55 PFLOPs sustained in MD
~ f noaes

~ 370 TFLOPs ;

Malecular Analysis/
_ Dynamics | Adaptive Sampling

ﬁ ’ — Control Analysis Pipeline

e il = —  MD Data (analyze trajectories,
Gpgfgggrs' y build MSMs, perform

~21, nodes

| adaptive seeding)
~ 4060 TFLOPs - .

I
v @
I

Bio-X2 cluster
2,208 cores
14.1 TFLOPs

(assign MD work
units to nodes,
accept results)

PlayStation 3 clients:
~36,000 hodes

I

|

I

I

I

Work Servers |

|

I

I

~ 2120 TFLOPs I




“Real” Chemistry: States and Rates

Synthesis
e
Degraded E@g |
fragments E = __"F_-_--_____‘-.._ .5 Disordered
> ﬁuﬁ%/‘ Au el aggregate
Disordered /iy > ST

S A 2

3;}5;;% ...... > SSEC —» 2% Disordered
SSg +—— ‘*ﬁé‘f‘g -— " aggregate
eSS - Zif3
Amyloid Prefibrillar
fibril species

Figure from Blisomer

Dobson, et al, Nature
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http://simtk.org/home/msmbuilder

MSMs let us compute states and rates

Synthesis

States defined
kinetically —
thermodynamically
relevant!

Prefibrillar
species

fibril
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Conclusions

e Future HPC will be driven by heterogeneous architectures and
(even more) massive parallelism

e Applications need both systems- and algorithms-level redesign
to be effective on next-generation HPC

e Our work shows a possible direction: GPU codes (PAPER,
OpenMM) and new algorithms (SCISSORS, MSMBuilder) for
cheminformatics and physical simulation
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