Folding@Everywhere

Computational Biochemistry in the New Era of HPC

Imran Haque Department of Computer Science Stanford University

http://cs.stanford.edu/people/ihaque http://folding.stanford.edu

Hyperience, 24 Nov 2010

Conclusions

- Future HPC will be driven by **heterogeneous** architectures and (even more) massive parallelism
- Applications need both **systems- and algorithms-level redesign** to be effective on next-generation HPC
- Our work shows a possible direction: GPU rewrites and entirely new algorithms driving cheminformatics and physical simulation

Chemical Biology - Methods

- Experimental assays: expensive, laborintensive
- Computation
 - Physical simulation

Physical Simulation

- MD = Numerical Integration of Newton's equation
- Dominant simulation method in computational biology and chemistry
- Can work with detailed (eg atomistic) or coarse grained models
- Detailed models needed for quantitative comparison to experiment

Physical Simulation - Timescales

Chemical Biology - Methods

- Experimental assays: expensive, laborintensive
- Computation
 - Physical simulation
 - Data mining

Chemical Databases

- A modern trend giant public databases of chemical assay data
 - NCBI PubChem: 34,340 assays; 965,730 compounds
 - EBI ChEMBLdb: 8,054 targets; 600,625 compounds
- Companies releasing their internal databases
 - GlaxoSmithKline: Gamo et al. <u>Thousands of chemical</u> <u>starting points for antimalarial lead identification</u>. *Nature* 465, 305-310 (20 May 2010).
- Let's learn from this data and make predictions chemical informatics or data mining!

The Cheminformatics Gap

Computational analysis has not kept up with growth in chemical databases: the **cheminformatics gap.**

Not just a linear gap

- Chemical similarity comparison is a common bottleneck in chemical algorithms
- How many similarities for N molecules?
 - Virtual screening, k-means clustering: O(N)
 - Hierarchical clustering, network analysis: O(N²)
 - LM hierarchical: O(N³)

The gap is not just 10x-100x... more like 100x – 1 million x!

The Computational Barrier

For both physical simulation and data mining, we're about 1,000,000x short of where we'd like to be. What can we do?

Why GPUs?

• GPUs have excellent peak throughput and efficiency

• BUT

- Hard to program
- Require inherent data parallelism
- Often require complete rewrite
- Questionable reliability

What's in a GPU?

NVIDIA GF100 (GeForce GTX 480)

AMD Cypress (Radeon HD 5870)

Physical Simulation

- Molecular dynamics is highly parallel
- Synchronization overhead decreases as system size increases
- Excellent fit for GPU acceleration

(Beauchamp, OpenMM team, Pande)

OpenMM – High Performance MD

Molecule	# atoms	ns/day	speedup*	GFLOP/s (GPU)	GFLOP/s (x86)
fip35	544	576	128x	311	657
villin	582	529	136x	328	692
lambda	1254	202	255x	547	1153
α-spectrin	5078	17	735x	805	1702

* GTX280-OpenMM vs Core 2 Duo 3GHz-AMBER (one core); Fermi is ~2x faster!

http://simtk.org/home/openmm

Friedrichs MS et al. *J. Comput. Chem.*, **2009**, *30*(6), pp 864-872 Luttman E et al. *J. Comput. Chem.*, **2009**, *30*(2), pp 268-274

3 Views of Chemical Similarity

GPU-Accelerated 3D Similarity

 Molecular overlay optimization: used to find new active compounds from a database given one active "query" molecule

- Complexity O(MN): double-loop over all atom pairs
- DB = ~10M mol.; CPU = 100/sec = ~2 days/query
- Use GPU to exploit parallelism of problem.

http://simtk.org/home/paper

Haque IS and Pande VS. J. Comput. Chem., **2010**, 31(1), pp 117-132 Haque IS and Pande VS. in *GPU Computing Gems*, vol 1. **2010**

PAPER or PLASTIC, sir?

 Use GPUs to accelerate 3D shape-only (PAPER) or shape+color (PLASTIC) comparison: 100x speedup

Simultaneous molecules/optimization (GeForce GTX 480)

• PLASTIC: 15000 alignments/sec/GPU

http://simtk.org/home/paper

Haque IS and Pande VS. J. Comput. Chem., **2010**, 31(1), pp 117-132 Haque IS and Pande VS. in *GPU Computing Gems*, vol 1. **2010**

The Computational Barrier

GPUs get us a factor 100-1000x. Problem solved?

Systems work is just the beginning – we also need **new algorithms** to bridge the rest of the gap. These algorithms will **rely on domain knowledge.**

Cheminformatics: a storage challenge

• Speeding up a O(N²) algo 100x is not enough:

Problem size	CPU time	Storage needed	
10 mols	1 ms	1 kB	
10K mols	1 min	1 GB	
100K mols	1 day	1 TB	
10M mols	3 yr	1 PB	
1B mols	30K yr	10K PB	

• Computing on existing-scale datasets requires entire datacenters' worth of storage.

A Modest Proposal

- Let's calculate all the pairwise similarities for compounds in PubChem3D (N = 17M) based on 3D shape and 2D chemical similarity
- Using CPUs
 - 3D: OpenEye ROCS: 150/sec/core = 30,000 cpu-years
 <u>1 PB for matrix</u>
- Add GPUs:
 - 3D: PAPER: 15K/sec/gpu
 Still 1 PB disk

= 300 gpu-years

SCISSORS: Math for Fun and Profit

- Many molecular similarity methods report similarity as a Tanimoto score
- How can we use the mathematical structure of Tanimotos to gain insight into the metrics and calculate them faster?

Classical vector Tanimoto returns value in [-1/3, 1] for a pair of vectors A, B in terms of their inner products

Tanimoto equation can be rearranged to get inner product in terms of Tanimoto and vector magnitudes

$$T_{AB} = \frac{\langle A, B \rangle}{\langle A, A \rangle + \langle B, B \rangle - \langle A, B \rangle}$$

$$\langle A, B \rangle = \frac{T_{AB}}{1 + T_{AB}} \left(\langle A, A \rangle + \langle B, B \rangle \right)$$

SCISSORS: Derivation

- Assume molecules can be represented as vectors in ${\bf R}^{\rm N}$
- Simple assumptions on <A,A> and <B,B> get us <A,B>

$$\langle A, B \rangle = \frac{2 T_{AB}}{1 + T_{AB}}$$

• Given a matrix G of inner products, want matrix M with molecule vectors along rows

$$MM^T = G$$

• G is real-symmetric, so use eigenvalue decomposition

$$G = MM^T = VDV^T$$
$$M = VD^{\frac{1}{2}}$$

Haque IS and Pande VS. J. Chem. Inf. Model., 2010 50(6), pp1075-1088.

SCISSORS: The key

- Select a small number k of molecules (k << N) to act as a "basis set"
- Do all-pairs comparison on basis set and decompose to molecule matrix **M**
- For each new "library" molecule x, run slow method only against basis set. Place inner products in a vector and solve for vector rep of x by least-squares:

$$M\vec{x} = T$$

• All-pairs: now only O(**kN**) slow computations!

Hardly Even a Request...

- 3D: Using PAPER+SCISSORS (basis size=2700) 17M * 2700 / 15000 = 35 gpu-day + 17M * 17M / 600M = 5 gpu-day 274,000x speedup (vs 30 000 cpu-yr)
- Storage: 17GB for SCISSORS
 33,000 x reduction
- Computations that required all of FAH can now be done on a single (well-equipped) desktop

Scalability and Resilience

• Proposed exascale initiative roadmap suggests dramatically higher concurrency levels

	2009	2011	2015	2018
FLOP/s	2 Peta	20 Peta	200 Peta	1000 Peta
Total	225,000	3,200,000	50,000,000	1,000,000,000
concurrency				
MTTI	Days	Days	Days	O(1 day)

- FAH data corroborate short MTTI for new GPU archs.
- Need scalable, resilient algorithms for physical sim

C Engelmann, Oak Ridge Natl. Lab

Haque IS and Pande VS. Proc. CCGrid 2010.

Limitations of traditional parallel MD

- Parallelism by spatial decomposition
 - each CPU gets assigned atoms
 - calculates the force for "its" atoms
 - communication between boxes
- Challenge
 - how to break up the problem for billions of processors when you only have millions of atoms?
 - What do you do when you only have thousands?!?!?
- What about scaling to billions of processors?
 - can't have # processors > # atoms
 - machine may not even run long enough to checkpoint/restart

figure from http://www.ks.uiuc.edu/Research/Algorithms/

Anton from D. E. Shaw

How to think of MD simulations

YES!

No

A statistical approach to simulation

 Sample metastable states:
 automatic algorithms to <u>adaptively sample</u> and <u>identify metastable states</u>
 via a <u>kinetic clustering mechanism</u> (avoid one/low dimensional R.C.'s)

2. Build transition matrix:

use MD to sample transition probabilities (ideally adaptively -- which allows MSMs to be more efficient than very long runs)

3. Use transition matrix:

transition matrix contains everything to predict structure, thermodynamics, and kinetics (built-in analysis via lumped MSM's)

> also see the work of: Caflisch, Chodera, Deuflhard, Dill, Hummer, Noé, Pande, Pitera, Singhal-Hinrichs, Roux, Schütte, Swope, Weber

Shorter trajectories can be more efficient

Shorter trajectories can be more efficient

Shorter trajectories can be more efficient

Adaptive Sampling – Parallel + Resilient

Adaptive Sampling – Parallel + Resilient

Folding@home – Parallel + Resilient

"Real" Chemistry: States and Rates

MSMs let us compute states and rates

Acknowledgments

Stanford

- Vijay Pande (PI)
- Paul Novick
- Greg Bowman
- Kyle Beauchamp
- Randy Radmer
- Mark Friedrichs
- Peter Eastman

Collaborators

- John Chodera
- Del Lucent
- Pat Walters
- Kim Branson
- Erik Lindahl
- Michael Houston
- Scott LeGrand
- Folding@home users

Conclusions

- Future HPC will be driven by **heterogeneous architectures** and (even more) **massive parallelism**
- Applications need both **systems- and algorithms-level redesign** to be effective on next-generation HPC
- Our work shows a possible direction: GPU codes (PAPER, OpenMM) and new algorithms (SCISSORS, MSMBuilder) for cheminformatics and physical simulation

http://folding.stanford.edu ihaque@cs.stanford.edu