
Hyperience, 24 Nov 2010

Imran Haque

Department of Computer Science

Stanford University

http://cs.stanford.edu/people/ihaque

http://folding.stanford.edu

Folding@Everywhere

Computational Biochemistry in the New Era of HPC



• Future HPC will be driven by heterogeneous 

architectures and (even more) massive parallelism

• Applications need both systems- and algorithms-level 

redesign to be effective on next-generation HPC

• Our work shows a possible direction: GPU rewrites 

and entirely new algorithms driving cheminformatics

and physical simulation

Conclusions



E. coli protein ???



E. coli penicillin binding 

protein 5

Which small 

molecules will 

a given protein 

bind?



What do these compounds do?

- inhibit penicillin binding proteins?

- kill bacteria?

- kill viruses?
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What do these compounds do?

- inhibit penicillin binding proteins?

- kill bacteria?

- kill viruses?



bisphenol A

estrogen mimic

clavulanic acid

beta-lactamase inhibitor

levofloxacin

DNA gyrase inhibitor

methicillin

beta-lactam antibiotic

zidovudine

HIV RT inhibitor

penicillin G

beta-lactam antibiotic



Chemical Biology - Methods

• Experimental assays: expensive, labor-

intensive

• Computation

– Physical simulation



Physical Simulation

• MD = Numerical 
Integration of Newton’s 
equation

• Dominant simulation 
method in computational 
biology and chemistry

• Can work with detailed (eg 
atomistic) or coarse 
grained models

• Detailed models needed 
for quantitative 
comparison to experiment

startstart

initialize positions/velocitiesinitialize positions/velocities

calculate force F = -∇Ucalculate force F = -∇U

apply thermostat/barostatapply thermostat/barostat

update positions/velocitiesupdate positions/velocities

Repeat until 

desired simulation 

length (∆t = 2fs)

Repeat until 

desired simulation 

length (∆t = 2fs)

analyze dataanalyze data



Physical Simulation - Timescales
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Chemical Biology - Methods

• Experimental assays: expensive, labor-

intensive

• Computation

– Physical simulation

– Data mining



Chemical Databases

• A modern trend – giant public databases of chemical 
assay data

– NCBI PubChem: 34,340 assays; 965,730 compounds

– EBI ChEMBLdb: 8,054 targets; 600,625 compounds

• Companies releasing their internal databases

– GlaxoSmithKline: Gamo et al. Thousands of chemical 
starting points for antimalarial lead identification. Nature

465, 305-310 (20 May 2010).

• Let’s learn from this data and make predictions –
chemical informatics or data mining!



The Cheminformatics Gap

Computational analysis has not kept up with growth in 

chemical databases: the cheminformatics gap.



Not just a linear gap

• Chemical similarity comparison is a common 

bottleneck in chemical algorithms

• How many similarities for N molecules?

– Virtual screening, k-means clustering: O(N)

– Hierarchical clustering, network analysis: O(N2)

– LM hierarchical: O(N3)

The gap is not just 10x-100x…

more like 100x – 1 million x!



The Computational Barrier

For both physical simulation and data mining, we’re 

about 1,000,000x short of where we’d like to be. 

What can we do?



Why GPUs?

• GPUs have excellent 
peak throughput and 
efficiency

• BUT

– Hard to program

– Require inherent data 
parallelism

– Often require complete 
rewrite

– Questionable reliability

>20x

>14x



What’s in a GPU?

NVIDIA GF100

(GeForce GTX 480)

AMD Cypress

(Radeon HD 5870)



Physical Simulation

• Molecular dynamics is 

highly parallel

• Synchronization 

overhead decreases as 

system size increases

• Excellent fit for GPU 

acceleration
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calculate force F = -∇Ucalculate force F = -∇U

apply thermostat/barostatapply thermostat/barostat

update positions/velocitiesupdate positions/velocities

Repeat until 

desired simulation 

length (∆t = 2fs)
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length (∆t = 2fs)
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OpenMM – High Performance MD

Molecule # atoms ns/day speedup*
GFLOP/s 

(GPU)

GFLOP/s 

(x86)

fip35 544 576 128x 311 657

villin 582 529 136x 328 692

lambda 1254 202 255x 547 1153

α-spectrin 5078 17 735x 805 1702

* GTX280-OpenMM vs Core 2 Duo 3GHz-AMBER (one core);

Fermi is ~2x faster!

(Beauchamp, OpenMM team, Pande)

http://simtk.org/home/openmm

Friedrichs MS et al. J. Comput. Chem., 2009, 30(6), pp 864-872

Luttman E et al. J. Comput. Chem., 2009, 30(2), pp 268-274



3 Views of Chemical Similarity

Alanine Methionine

• 2D substructure:

• 3D shape:

• 3D chemotype:



GPU-Accelerated 3D Similarity

� Molecular overlay optimization: used to find new 

active compounds from a database given one active 

“query” molecule

� Complexity O(MN): double-loop over all atom pairs

� DB = ~10M mol.; CPU = 100/sec = ~2 days/query

� Use GPU to exploit parallelism of problem.

http://simtk.org/home/paper

Haque IS and Pande VS. J. Comput. Chem., 2010, 31(1), pp 117-132

Haque IS and Pande VS. in GPU Computing Gems, vol 1. 2010



PAPER or PLASTIC, sir?

• Use GPUs to accelerate 3D shape-only (PAPER) or 

shape+color (PLASTIC) comparison: 100x speedup

• PLASTIC: 15000 alignments/sec/GPU http://simtk.org/home/paper

Haque IS and Pande VS. J. Comput. Chem., 2010, 31(1), pp 117-132

Haque IS and Pande VS. in GPU Computing Gems, vol 1. 2010



GPUs get us a factor 100-1000x. Problem solved?

Systems work is just the beginning – we also need 

new algorithms to bridge the rest of the gap. These 

algorithms will rely on domain knowledge.

The Computational Barrier



Cheminformatics: a storage challenge

• Speeding up a O(N2) algo 100x is not enough:

• Computing on existing-scale datasets requires 

entire datacenters’ worth of storage.

10K PB30K yr1B mols

1 PB3 yr10M mols

1 TB1 day100K mols

1 GB1 min10K mols

1 kB1 ms10 mols

Storage neededCPU timeProblem size



A Modest Proposal

• Let’s calculate all the pairwise similarities for 

compounds in PubChem3D (N = 17M) based on 3D 

shape and 2D chemical similarity

• Using CPUs

– 3D: OpenEye ROCS: 150/sec/core = 30,000 cpu-years

1 PB for matrix

• Add GPUs:

– 3D: PAPER: 15K/sec/gpu   = 300 gpu-years

Still 1 PB disk



SCISSORS: Math for Fun and Profit

• Many molecular similarity methods report similarity 

as a Tanimoto score

• How can we use the mathematical structure of 

Tanimotos to gain insight into the metrics and 

calculate them faster?

Classical vector Tanimoto returns value 

in [-1/3, 1] for a pair of vectors A, B in 

terms of their inner products

Tanimoto equation can be rearranged to 

get inner product in terms of Tanimoto

and vector magnitudes

Haque IS and Pande VS. J. Chem. Inf. Model., 2010 50(6), pp1075-1088.



SCISSORS: Derivation

• Assume molecules can be represented as vectors in RN

• Simple assumptions on <A,A> and <B,B> get us <A,B>

• Given a matrix G of inner products, want matrix M with 

molecule vectors along rows

• G is real-symmetric, so use eigenvalue decomposition

Haque IS and Pande VS. J. Chem. Inf. Model., 2010 50(6), pp1075-1088.



SCISSORS: The key

• Select a small number k of molecules (k << N) to act as 

a “basis set”

• Do all-pairs comparison on basis set and decompose to 

molecule matrix M

• For each new “library” molecule x, run slow method 

only against basis set. Place inner products in a vector 

and solve for vector rep of x by least-squares:

• All-pairs: now only O(kN) slow computations!

Haque IS and Pande VS. J. Chem. Inf. Model., 2010 50(6), pp1075-1088.



Hardly Even a Request…

• 3D: Using PAPER+SCISSORS (basis size=2700) 

17M * 2700 / 15000 = 35 gpu-day +

17M * 17M / 600M      =  5  gpu-day

274,000x speedup (vs 30 000 cpu-yr)

• Storage: 17GB for SCISSORS

33,000 x reduction

• Computations that required all of FAH can now be 

done on a single (well-equipped) desktop



Scalability and Resilience

C Engelmann, Oak Ridge Natl. Lab

Haque IS and Pande VS. Proc. CCGrid 2010.

1000 Peta200 Peta20 Peta2 PetaFLOP/s

O(1 day)DaysDaysDaysMTTI

1,000,000,00050,000,0003,200,000225,000Total 

concurrency

2018201520112009

• Proposed exascale initiative roadmap suggests 

dramatically higher concurrency levels

• FAH data corroborate short MTTI for new GPU archs.

• Need scalable, resilient algorithms for physical sim



Limitations of traditional parallel MD

• Parallelism by spatial decomposition

– each CPU gets assigned atoms

– calculates the force for “its” atoms

– communication between boxes

• Challenge

– how to break up the problem for 
billions of processors when you only 
have millions of atoms?

– What do you do when you only have 
thousands?!?!?

• What about scaling to billions of 
processors?

– can’t have # processors > # atoms

– machine may not even run long 
enough to checkpoint/restart

figure from http://www.ks.uiuc.edu/Research/Algorithms/

Anton from D. E. Shaw



How to think of MD simulations

YES! No



A statistical approach to simulation

3.  Use transition matrix: 

transition matrix contains everything to 

predict structure, thermodynamics, and 

kinetics (built-in analysis via lumped MSM’s)

1.  Sample metastable states: 

automatic algorithms to adaptively sample

and identify metastable states

via a kinetic clustering mechanism

(avoid one/low dimensional R.C.’s)
3 helix bundle

also see the work of:      Caflisch, Chodera, Deuflhard, Dill, Hummer, 

Noé, Pande, Pitera, Singhal-Hinrichs, Roux, Schütte, Swope, Weber 

2.  Build transition matrix: 

use MD to sample transition probabilities 

(ideally adaptively -- which allows MSMs to 

be more efficient than very long runs)

http://simtk.org/home/msmbuilder



blue=ideal

sampling

Shorter trajectories can be more efficient

Number of Trajectories
100 200 300 400 5000 100 200 300 400 5000

simple,

uncoupled

red=poor 

sampling

Tests of a

linear network

fully uncoupled trajectories

hit a limit: need to be long

black lines = iso-total 

simulation contours

(Bowman, Pande)
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sampling

Shorter trajectories can be more efficient
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blue=ideal

sampling

Shorter trajectories can be more efficient

Number of Trajectories
100 200 300 400 5000 100 200 300 400 5000

adaptive
simple,

uncoupled

Tests of a

linear network

fully uncoupled trajectories

hit a limit: need to be long

adaptive sampling 

allows lots of shorter 

trajectories to be more

efficient: simulate only 

what you need

black lines = iso-total 

simulation contours

(Bowman, Pande)

red=poor 

sampling



Adaptive Sampling – Parallel + Resilient

start:  run some initial simulationsstart:  run some initial simulations

cluster data into microstatescluster data into microstates

lump microstates into macrostateslump microstates into macrostates

calculate state’s contribution to uncertaintycalculate state’s contribution to uncertainty

start new simulations ~ uncertaintystart new simulations ~ uncertainty

Repeat until desired 

uncertainty.

Can overlap cluster 

steps with FAH!

Repeat until desired 

uncertainty.

Can overlap cluster 

steps with FAH!

final result:  well-constructed MSMfinal result:  well-constructed MSM

(Singhal, Bowman, Haque, Pande)

FAH
(~day)

cluster
(~hour)

wall clock

cluster
(~hour)

cluster
(~minute)

FAH
(~day)

Tightly-coupled parallelism

Loosely-coupled parallelism

http://simtk.org/home/msmbuilder



Adaptive Sampling – Parallel + Resilient

start:  run some initial simulationsstart:  run some initial simulations

MSM/adaptive 

sampling analysis

MSM/adaptive 

sampling analysis
Iterative simulation minimizes 

state/transition uncertainty

Iterative simulation minimizes 

state/transition uncertainty

result:  well-constructed MSMresult:  well-constructed MSM

(Singhal, Bowman, Haque, Pande)

Tightly-coupled parallelismLoosely-coupled parallelism

http://simtk.org/home/msmbuilder



Folding@home – Parallel + Resilient

(Pande Group)

Tightly-coupled parallelismLoosely-coupled parallelism

http://folding.stanford.edu



Figure from 

Dobson, et al, Nature

“Real” Chemistry: States and Rates



MSMs let us compute states and rates

States defined

kinetically –

thermodynamically 

relevant!

http://simtk.org/home/msmbuilder
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• Future HPC will be driven by heterogeneous architectures and 

(even more) massive parallelism

• Applications need both systems- and algorithms-level redesign

to be effective on next-generation HPC

• Our work shows a possible direction: GPU codes (PAPER, 

OpenMM) and new algorithms (SCISSORS, MSMBuilder) for 

cheminformatics and physical simulation
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