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Why bother with this GPU business?

Aggregate performance continues to grow, but per-core 
performance has stagnated.



Why bother with this GPU business?

GPUs have massively higher peak aggregate performance – 
largely because of their much higher core counts.



Why bother with this GPU business?

Multicore is the present, not the future – 
and it’s even more present on GPUs.

Go where the FLOPs are!



Why bother with this GPU business?

Multicore is the present, not the future – 
and it’s even more present on GPUs.

Go where the FLOPs are! Folding@home already does.



How many cores does it take to get to the 
center of a GPU?

NVIDIA GT200 (GeForce GTX 285) AMD Cypress (Radeon HD 5870)

Sources: NVIDIA, AMD

NVIDIA and AMD GPUs have very different 
internals, but share characteristics – wide 

SIMD, wide memory interfaces, high 
FLOP/bandwidth ratios.



The original multithreading challenge

• Jacquard loom (1801)

• Automatic control of 
loom hooks to make 
intricate patterns

• No one wants to be the 
“drawboy”



Today’s multithreading challenges

• Extracting parallelism from scientific problems

– Embarrassing parallelism to none at all

• Efficient use of memory bandwidth

– Von Neumann bottleneck

• Hardware reliability issues?

• Difficulties in rapid prototyping

Build libraries to limit the population of modern 
drawboys!



FINDING PARALLELISM,
WHEREVER IT MAY ROAM

3-D Chemical Similarity Calculations on GPUs

Haque IS and Pande VS. PAPER – Accelerating Parallel Evaluations of ROCS. J. Comp. Chem. 2009.



Introduction to Chemical Similarity Search

• Similar compounds (may) have similar properties
• Given a query structure (known drug, screening hit), 

can you find “similar” compounds in a library?

• Many methods; usual result is a Tanimoto/Jaccard 
coefficient:

• Embarrassingly parallel across a library



PAPER – Introduction

• Model molecular volume as union of atom-centered 
isotropic Gaussians; consider overlap b/w molecules

• 100s-1000s atom-atom pairs in inner loop
• Use BFGS local optimizer to maximize overlap
• Use initial conditions + library parallelism to fully 

load the GPU

Haque IS and Pande VS. J. Comp. Chem 2009. https://simtk.org/home/paper



PAPER – Optimizations

• Each molecule pair 
handled by a thread 
block 
(SIMD over inner loops)

• Run multiple molecules 
simultaneously:
reduced sync overhead

• Entire optimizer on-chip: 
mitigate transfer latency

Haque IS and Pande VS. J. Comp. Chem 2009. https://simtk.org/home/paper



PAPER – Results

Haque IS and Pande VS. J. Comp. Chem. 2009https://simtk.org/home/paper

• “Small” molecules have insufficient SIMD parallelism in inner loops to load GPUs well

• Need to run many molecules+starting conditions in parallel to achieve peak speedup



TAKING ANOTHER BRICK OUT
OF THE MEMORY WALL

Algorithmic Redesign for 1-D Similarity Calculations on GPUs

Haque IS and Walters WP. Row-Oriented Fast LINGOs. In preparation.



• SMILES: graph-based linear molecular notation
– Benzene -> c1ccccc1, Cyclohexylbenzene -> C1CCC(CC1)c2ccccc2

• LINGOs (Vidal et al. 2005) – compare two molecules 
by fragmenting SMILES into 4-char substrings, 
matching counts

• Grant et al. 2006 – build DFA from reference string, 
run query strings through automaton
– Branchy, memory-intensive: poor for GPUs!

Introduction to LINGOs



GPU LINGO – Algorithm

• Alternative: LINGOs as a multiset problem

• 4-substrings are identical with 32-bit integers - get 4 
comparisons at the same time!

• Treat a molecule as a “bag” of numbers - sorted 
array of numbers with corresponding array of counts

• Calculate Tanimoto by algorithm like list merge – 
easily parallelized, low memory usage

Haque IS and Walters WP. In preparation.



GPU LINGO – Optimization

• Normal memory layout (left) imposes strided 
memory access on SIMD units

• Transposed layout coalesces memory accesses
• 2-D texture cache eliminates a barrier sync

Haque IS and Walters WP. In preparation.
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GPU LINGO - Results

Haque IS and Walters WP. In preparation.
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Redesigned algorithm: 
82x faster on a GPU, 2x even on a CPU!



GPU MEMORY: ALONE 
IN THE (COSMIC-RAY) MOONLIGHT

Investigating Memory Soft Errors in GPGPU

Haque IS and Pande VS. Hard Data on Soft Errors – A Large-Scale Assessment of Real-World Error 
Rates in GPGPU. Submitted to J. Comp. Chem; poster at Supercomputing 2009; arXiv:0910.0505v1.



MemtestG80 – Motivation

• GPUs have their origin in error-insensitive consumer 
graphics

• Neither ECC nor parity on graphics memory

• How suitable is the installed base of consumer 
GPUs (and consumer-GPU derived professional 
hardware!) for error-sensitive general purpose 
computing?

Haque IS and Pande VS. Submitted. 
arXiv:0910.0505v1



MemtestG80 – Methodology
• Wrote MemtestG80 – custom test software for 

NVIDIA GPUs, based on Memtest86+ for x86 PCs

https://simtk.org/home/memtest
• Expect a low error-rate and environment sensitivity, 

so must sample many cards in diverse environments
• Ran for ~7 months over 58,000+ NVIDIA GPUs on 

Folding@home (>800 TB-hr of testing)

Haque IS and Pande VS. Submitted.
arXiv:0910.0505v1



• Negative control run on GeForce 8800 GTX and 8x Tesla 
C870 (consumer and GPGPU G80 cards)

• Controlled environment, power, host hardware

• 925,000 FAH-equivalent iters/Tesla, >1M on GeForce

• No errors observed in control test

• Possible that environmental effects (better power, 
cooling) are in effect

• Possible that Tesla cards are actually made of more 
reliable hardware

MemtestG80 – Results

Haque IS and Pande VS. Submitted. 
arXiv:0910.0505v1



MemtestG80 – Results

Haque IS and Pande VS. Submitted. 
arXiv:0910.0505v1

• 2/3 of NVIDIA GPUs “in the wild” on Folding@home showed measurable rate of memory errors

• Mode of error distribution around probability = 2x10-5 error/test iteration = ~1-2 error/week for an 
“average” board

• Additional modes @ 0, ~2x10-6- why? Not overclocking or time of day (proxy for temperature).



• Newer GT200 GPU has a much lower error generation rate

• GT200 generates fewer memory transactions on most sensitive test (13x fewer than G80) – lines up 
well with GT200 error generation rate (~10x lower than G80)

• Possible that both G80 and GT200 have an inherent nonzero probability of error per-transaction – 
both architectures have larger fraction of failing boards as you consider more test iterations

• Hopefully Fermi’s ECC will fix this.

MemtestG80 – Results

Haque IS and Pande VS. Submitted. 
arXiv:0910.0505v1



YOU DON’T HAVE TO LIVE
LIKE A (GPU) REFUGEE

OpenMM and the future of user-level GPU libraries

Friedrichs MS et al. Accelerating Molecular Dynamics Simulation on Graphics Processing Units. J. 
Comp. Chem. 2009 



The OpenMM Opportunity

• MD community is fragmented – tens of codes with 
overlapping functionality and differing interfaces

• New advances (algorithms, hardware acceleration) 
must be ported individually to all these codes

• We propose OpenMM, an extensible molecular 
mechanics API to unify MM like OpenGL for graphics

• Incorporates hardware acceleration in base design
• Use this API as backend for existing MD packages

https://simtk.org/home/openmm



Connections to OpenMM

existing codes

e.g. AMBER, CHARMM, 
GROMACS, NAMD

theoretical chemists

e.g. new solvation models, 
sampling

Hardware vendors

e.g. AMD/ATI, Intel, 
NVIDIA

GPU programmers

e.g. Simbios, collaborators, 
computer scientists

low level API

high level API
OpenMM



OpenMM-enabled Applications

ProtomolFolding@home Gromacs

NAST YankZephyr

http://folding.stanford.edu http://www.gromacs.org http://protomol.sourceforge.net

http://simtk.org/home/nast http://simtk.org/home/zephyr http://simtk.org/home/yank

http://folding.stanford.edu
http://www.gromacs.org
http://protomol.sourceforge.net/
http://folding.stanford.edu
http://folding.stanford.edu
http://folding.stanford.edu


OpenMM – Performance

Molecule # atoms ns/day Speedup* GFLOPS 
(GPU native)

GFLOPS§ 
(x86-equiv)

fip35 544 576 128x 311 657

villin 582 529 136x 328 692

lambda 1254 202 255x 547 1153

α-spectrin 5078 17 735x 805 1702

(*) OpenMM on a GTX 280 vs. AMBER on one core of a 3GHz Core 2 Duo

(§) GPUs evaluate some transcendentals more efficiently than x86, so equivalent 
      FLOP counts are included for each architecture

https://simtk.org/home/openmm



OpenMM – Performance

Using OpenMM on the GPU, we have folded NTL9, the slowest-
folding protein yet computationally folded – a 1000x harder 

problem than folding villin! (Vince Voelz)



From Sprinter to Wide Receiver

AP Photo/Thomas Kienzle

How can we turn a sprinter – a high-performance, but inflexible 
scientific code – into a wide receiver – a code that does more 

than just run fast in a straight line?

https://simtk.org/home/openmm



OpenMM Lepton

• A domain-specific language for MD – optimizations 
are easier; no “magic compiler” needed

• Describe code in equations
– Very flexible, custom nonbonded code
– Ease of coding: automatic derivative evaluation, etc.

Subclass CustomFunction, implement:
int getNumArguments()
double evaluate(const double* arguments)
double evaluateDerivative(const double* arguments,const int* derivOrder) const
CustomFunction* clone() const

Provide custom functions when parsing:
map<string,CustomFunction*> functions;
functions[“foo”] = new MyCustomFunction();
ParsedExpression exp = Parser::parse(“10*foo(x/2)”,functions);

https://simtk.org/home/openmm



Example: PyMD

• Interface to Python
– 9 lines of code to customizable, high-performance MD

import FF
import Simulation 

FField = FF.ForceField.LoadFromHDF("./Amber99.h5") 
Conf = FF.Conformation.LoadFromPDB("Test","./state0.pdb") 
Topo = FF.Topology.CreateTopologyFromConformation(Amber99,Conf) 
Sim = Simulation.Simulation.CreateSimulation(FField, Topo, Conf,   
      Temp=300., Friction=1.0, TimeStep=0.002, GBSA=True, BondConstr=True) 

Sim.Step(50000) 
Conf["XYZ"]=Sim.GetXYZ() 
Conf.SaveToPDB("Traj2.pdb") 

https://simtk.org/home/openmm
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Conclusions
• Need to choose applications that are parallel.
• Redesign algorithms both for parallelism and access – 

helps CPUs too!
• Trust, but verify, hardware.
• High-level libraries are the way to go.
• Questions? ihaque@cs.stanford.edu

Package URL (Software/Publication)

PAPER (3-D chemical similarity) https://simtk.org/home/paper
http://dx.doi.org/10.1002/jcc.21307

MemtestG80 (GPU hardware test) https://simtk.org/home/memtest
http://arxiv.org/abs/0910.0505

OpenMM (Molecular mechanics) https://simtk.org/home/openmm
http://dx.doi.org/10.1002/jcc.21209 

gpuLINGO (1-D chemical similarity) OpenCL port on its way – stay tuned!

https://simtk.org/home/paper
https://simtk.org/home/memtest
https://simtk.org/home/openmm

