
Imran Haque
Department of Computer Science
Stanford University

http://cs.stanford.edu/people/ihaque
http://folding.stanford.edu

Of Jacquard Looms and Jaccard Coefficients
Multithreading Biomolecular Simulations in a GPU World

NSF-NAIS Workshop on Intelligent Software
20 October 2009Annotated PDF version

Why bother with this GPU business?

Aggregate performance continues to grow, but per-core
performance has stagnated.

Why bother with this GPU business?

GPUs have massively higher peak aggregate performance –
largely because of their much higher core counts.

Why bother with this GPU business?

Multicore is the present, not the future –
and it’s even more present on GPUs.

Go where the FLOPs are!

Why bother with this GPU business?

Multicore is the present, not the future –
and it’s even more present on GPUs.

Go where the FLOPs are! Folding@home already does.

How many cores does it take to get to the
center of a GPU?

NVIDIA GT200 (GeForce GTX 285) AMD Cypress (Radeon HD 5870)

Sources: NVIDIA, AMD

NVIDIA and AMD GPUs have very different
internals, but share characteristics – wide

SIMD, wide memory interfaces, high
FLOP/bandwidth ratios.

The original multithreading challenge

• Jacquard loom (1801)

• Automatic control of
loom hooks to make
intricate patterns

• No one wants to be the
“drawboy”

Today’s multithreading challenges

• Extracting parallelism from scientific problems

– Embarrassing parallelism to none at all

• Efficient use of memory bandwidth

– Von Neumann bottleneck

• Hardware reliability issues?

• Difficulties in rapid prototyping

Build libraries to limit the population of modern
drawboys!

FINDING PARALLELISM,
WHEREVER IT MAY ROAM

3-D Chemical Similarity Calculations on GPUs

Haque IS and Pande VS. PAPER – Accelerating Parallel Evaluations of ROCS. J. Comp. Chem. 2009.

Introduction to Chemical Similarity Search

• Similar compounds (may) have similar properties
• Given a query structure (known drug, screening hit),

can you find “similar” compounds in a library?

• Many methods; usual result is a Tanimoto/Jaccard
coefficient:

• Embarrassingly parallel across a library

PAPER – Introduction

• Model molecular volume as union of atom-centered
isotropic Gaussians; consider overlap b/w molecules

• 100s-1000s atom-atom pairs in inner loop
• Use BFGS local optimizer to maximize overlap
• Use initial conditions + library parallelism to fully

load the GPU

Haque IS and Pande VS. J. Comp. Chem 2009. https://simtk.org/home/paper

PAPER – Optimizations

• Each molecule pair
handled by a thread
block
(SIMD over inner loops)

• Run multiple molecules
simultaneously:
reduced sync overhead

• Entire optimizer on-chip:
mitigate transfer latency

Haque IS and Pande VS. J. Comp. Chem 2009. https://simtk.org/home/paper

PAPER – Results

Haque IS and Pande VS. J. Comp. Chem. 2009https://simtk.org/home/paper

• “Small” molecules have insufficient SIMD parallelism in inner loops to load GPUs well

• Need to run many molecules+starting conditions in parallel to achieve peak speedup

TAKING ANOTHER BRICK OUT
OF THE MEMORY WALL

Algorithmic Redesign for 1-D Similarity Calculations on GPUs

Haque IS and Walters WP. Row-Oriented Fast LINGOs. In preparation.

• SMILES: graph-based linear molecular notation
– Benzene -> c1ccccc1, Cyclohexylbenzene -> C1CCC(CC1)c2ccccc2

• LINGOs (Vidal et al. 2005) – compare two molecules
by fragmenting SMILES into 4-char substrings,
matching counts

• Grant et al. 2006 – build DFA from reference string,
run query strings through automaton
– Branchy, memory-intensive: poor for GPUs!

Introduction to LINGOs

GPU LINGO – Algorithm

• Alternative: LINGOs as a multiset problem

• 4-substrings are identical with 32-bit integers - get 4
comparisons at the same time!

• Treat a molecule as a “bag” of numbers - sorted
array of numbers with corresponding array of counts

• Calculate Tanimoto by algorithm like list merge –
easily parallelized, low memory usage

Haque IS and Walters WP. In preparation.

GPU LINGO – Optimization

• Normal memory layout (left) imposes strided
memory access on SIMD units

• Transposed layout coalesces memory accesses
• 2-D texture cache eliminates a barrier sync

Haque IS and Walters WP. In preparation.

M0L0 M0L1 M0L2 M0L3

M1L0 M1L1 M1L2 M1L3

M2L0 M2L1 M2L2 M2L3

M3L0 M3L1 M3L2 M3L3

M0L0 M1L0 M2L0 M3L0

M0L1 M1L1 M2L1 M3L1

M0L2 M1L2 M2L2 M3L2

M0L3 M1L3 M2L3 M3L3

18% peak throughput 98% peak throughput

GPU LINGO - Results

Haque IS and Walters WP. In preparation.

873.6

1731

0
200
400
600
800

1000
1200
1400
1600
1800

kLingo/sec

OpenEye OELingoSim multisetCPU

0.8736 1.731
11.69

71.92

0

10

20

30

40

50

60

70

80

MLingo/sec

OpenEye
OELingoSim

multisetCPU multisetGPU,
GT120

multisetGPU,
Tesla C1060

GPU LINGO - Results

Haque IS and Walters WP. In preparation.

Redesigned algorithm:
82x faster on a GPU, 2x even on a CPU!

GPU MEMORY: ALONE
IN THE (COSMIC-RAY) MOONLIGHT

Investigating Memory Soft Errors in GPGPU

Haque IS and Pande VS. Hard Data on Soft Errors – A Large-Scale Assessment of Real-World Error
Rates in GPGPU. Submitted to J. Comp. Chem; poster at Supercomputing 2009; arXiv:0910.0505v1.

MemtestG80 – Motivation

• GPUs have their origin in error-insensitive consumer
graphics

• Neither ECC nor parity on graphics memory

• How suitable is the installed base of consumer
GPUs (and consumer-GPU derived professional
hardware!) for error-sensitive general purpose
computing?

Haque IS and Pande VS. Submitted.
arXiv:0910.0505v1

MemtestG80 – Methodology
• Wrote MemtestG80 – custom test software for

NVIDIA GPUs, based on Memtest86+ for x86 PCs

https://simtk.org/home/memtest
• Expect a low error-rate and environment sensitivity,

so must sample many cards in diverse environments
• Ran for ~7 months over 58,000+ NVIDIA GPUs on

Folding@home (>800 TB-hr of testing)

Haque IS and Pande VS. Submitted.
arXiv:0910.0505v1

• Negative control run on GeForce 8800 GTX and 8x Tesla
C870 (consumer and GPGPU G80 cards)

• Controlled environment, power, host hardware

• 925,000 FAH-equivalent iters/Tesla, >1M on GeForce

• No errors observed in control test

• Possible that environmental effects (better power,
cooling) are in effect

• Possible that Tesla cards are actually made of more
reliable hardware

MemtestG80 – Results

Haque IS and Pande VS. Submitted.
arXiv:0910.0505v1

MemtestG80 – Results

Haque IS and Pande VS. Submitted.
arXiv:0910.0505v1

• 2/3 of NVIDIA GPUs “in the wild” on Folding@home showed measurable rate of memory errors

• Mode of error distribution around probability = 2x10-5 error/test iteration = ~1-2 error/week for an
“average” board

• Additional modes @ 0, ~2x10-6- why? Not overclocking or time of day (proxy for temperature).

• Newer GT200 GPU has a much lower error generation rate

• GT200 generates fewer memory transactions on most sensitive test (13x fewer than G80) – lines up
well with GT200 error generation rate (~10x lower than G80)

• Possible that both G80 and GT200 have an inherent nonzero probability of error per-transaction –
both architectures have larger fraction of failing boards as you consider more test iterations

• Hopefully Fermi’s ECC will fix this.

MemtestG80 – Results

Haque IS and Pande VS. Submitted.
arXiv:0910.0505v1

YOU DON’T HAVE TO LIVE
LIKE A (GPU) REFUGEE

OpenMM and the future of user-level GPU libraries

Friedrichs MS et al. Accelerating Molecular Dynamics Simulation on Graphics Processing Units. J.
Comp. Chem. 2009

The OpenMM Opportunity

• MD community is fragmented – tens of codes with
overlapping functionality and differing interfaces

• New advances (algorithms, hardware acceleration)
must be ported individually to all these codes

• We propose OpenMM, an extensible molecular
mechanics API to unify MM like OpenGL for graphics

• Incorporates hardware acceleration in base design
• Use this API as backend for existing MD packages

https://simtk.org/home/openmm

Connections to OpenMM

existing codes

e.g. AMBER, CHARMM,
GROMACS, NAMD

theoretical chemists

e.g. new solvation models,
sampling

Hardware vendors

e.g. AMD/ATI, Intel,
NVIDIA

GPU programmers

e.g. Simbios, collaborators,
computer scientists

low level API

high level API
OpenMM

OpenMM-enabled Applications

ProtomolFolding@home Gromacs

NAST YankZephyr

http://folding.stanford.edu http://www.gromacs.org http://protomol.sourceforge.net

http://simtk.org/home/nast http://simtk.org/home/zephyr http://simtk.org/home/yank

http://folding.stanford.edu
http://www.gromacs.org
http://protomol.sourceforge.net/
http://folding.stanford.edu
http://folding.stanford.edu
http://folding.stanford.edu

OpenMM – Performance

Molecule # atoms ns/day Speedup* GFLOPS
(GPU native)

GFLOPS§
(x86-equiv)

fip35 544 576 128x 311 657

villin 582 529 136x 328 692

lambda 1254 202 255x 547 1153

α-spectrin 5078 17 735x 805 1702

(*) OpenMM on a GTX 280 vs. AMBER on one core of a 3GHz Core 2 Duo

(§) GPUs evaluate some transcendentals more efficiently than x86, so equivalent
 FLOP counts are included for each architecture

https://simtk.org/home/openmm

OpenMM – Performance

Using OpenMM on the GPU, we have folded NTL9, the slowest-
folding protein yet computationally folded – a 1000x harder

problem than folding villin! (Vince Voelz)

From Sprinter to Wide Receiver

AP Photo/Thomas Kienzle

How can we turn a sprinter – a high-performance, but inflexible
scientific code – into a wide receiver – a code that does more

than just run fast in a straight line?

https://simtk.org/home/openmm

OpenMM Lepton

• A domain-specific language for MD – optimizations
are easier; no “magic compiler” needed

• Describe code in equations
– Very flexible, custom nonbonded code
– Ease of coding: automatic derivative evaluation, etc.

Subclass CustomFunction, implement:
int getNumArguments()
double evaluate(const double* arguments)
double evaluateDerivative(const double* arguments,const int* derivOrder) const
CustomFunction* clone() const

Provide custom functions when parsing:
map<string,CustomFunction*> functions;
functions[“foo”] = new MyCustomFunction();
ParsedExpression exp = Parser::parse(“10*foo(x/2)”,functions);

https://simtk.org/home/openmm

Example: PyMD

• Interface to Python
– 9 lines of code to customizable, high-performance MD

import FF
import Simulation

FField = FF.ForceField.LoadFromHDF("./Amber99.h5")
Conf = FF.Conformation.LoadFromPDB("Test","./state0.pdb")
Topo = FF.Topology.CreateTopologyFromConformation(Amber99,Conf)
Sim = Simulation.Simulation.CreateSimulation(FField, Topo, Conf,
 Temp=300., Friction=1.0, TimeStep=0.002, GBSA=True, BondConstr=True)

Sim.Step(50000)
Conf["XYZ"]=Sim.GetXYZ()
Conf.SaveToPDB("Traj2.pdb")

https://simtk.org/home/openmm

Collaborators
• Pat Walters
• Kim Branson
• John Chodera
• Erik Lindahl
• Michael Houston
• Scott LeGrand

• Folding@home
users

Acknowledgments

Stanford
• Vijay Pande (PI)
• Kyle Beauchamp
• Vince Voelz
• Christopher Bruns
• Peter Eastman
• Mark Friedrichs
• Kai Kohlhoff
• Michael Sherman

Conclusions
• Need to choose applications that are parallel.
• Redesign algorithms both for parallelism and access –

helps CPUs too!
• Trust, but verify, hardware.
• High-level libraries are the way to go.
• Questions? ihaque@cs.stanford.edu

Package URL (Software/Publication)

PAPER (3-D chemical similarity) https://simtk.org/home/paper
http://dx.doi.org/10.1002/jcc.21307

MemtestG80 (GPU hardware test) https://simtk.org/home/memtest
http://arxiv.org/abs/0910.0505

OpenMM (Molecular mechanics) https://simtk.org/home/openmm
http://dx.doi.org/10.1002/jcc.21209

gpuLINGO (1-D chemical similarity) OpenCL port on its way – stay tuned!

https://simtk.org/home/paper
https://simtk.org/home/memtest
https://simtk.org/home/openmm

