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Hybrid Vigor

Using Heterogeneous HPC to Accelerate Chemical Biology



E. coli protein ???



E. coli penicillin binding 

protein 5

Which small 

molecules will 

a given protein 

bind?



What do these compounds do?

- inhibit penicillin binding proteins?

- kill bacteria?

- kill viruses?
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What do these compounds do?

- inhibit penicillin binding proteins?

- kill bacteria?

- kill viruses?



bisphenol A

estrogen mimic

clavulanic acid

beta-lactamase inhibitor

levofloxacin

DNA gyrase inhibitor

methicillin

beta-lactam antibiotic

zidovudine

HIV RT inhibitor

penicillin G

beta-lactam antibiotic



Chemical Biology - Methods

• Experimental assays: expensive, labor-

intensive

• Physical simulation?



OpenMM – High Performance

Molecule # atoms ns/day speedup*
GFLOPS 

(GPU)

GFLOPS 

(x86)

fip35 544 576 128x 311 657

villin 582 529 136x 328 692

lambda 1254 202 255x 547 1153

α-spectrin 5078 17 735x 805 1702

(*comparing a GTX280 to a single core of a

3GHz Core 2 Duo using the AMBER code;

Fermi is ~2x faster!)

(Beauchamp, OpenMM team, Pande)http://simtk.org/home/openmm



• Interface to Python

– 8 lines to a customizable, high performance MD code

– tweak to your heart’s content, but keep high performance

• Custom Force classes

– code in equations, rather than CUDA/OpenCL, with high 

performance

OpenMM – Rapid Development

import FF, Simulation

FField = FF.ForceField.LoadFromHDF("./Amber99.h5")

Conf   = FF.Conformation.LoadFromPDB("Test","./state0.pdb")

Topo = FF.Topology.CreateTopologyFromConformation(Amber99,Conf)

Sim = Simulation.Simulation.CreateSimulation(FField,Topo,Conf,  

Temp=300.,Friction=1.0,TimeStep=0.002,GBSA=True,BondConstr=True)

Sim.Step(50000)

Conf["XYZ"] = Sim.GetXYZ()

Conf.SaveToPDB("Traj2.pdb")

map<string, CustomFunction*> functions;

functions["fn"]      = new MyCustomFunction();

ParsedExpression exp = Parser::parse("cos(x)*fn(x/2)",functions);

(Beauchamp, OpenMM team, Pande)http://simtk.org/home/openmm



Limitations of traditional parallel MD

• Parallelism by spatial decomposition

– each CPU gets assigned atoms

– calculates the force for “its” atoms

– communication between boxes

• Challenge

– how to break up the problem for 
billions of processors when you only 
have millions of atoms?

– What do you do when you only have 
thousands?!?!?

• What about scaling to billions of 
processors?

– can’t have # processors > # atoms

– machine may not even run long 
enough to checkpoint/restart

figure from http://www.ks.uiuc.edu/Research/Algorithms/

Anton from D. E. Shaw



How to think of MD simulations

YES! No



A statistical approach to simulation

3.  Use transition matrix: 

transition matrix contains everything to 

predict structure, thermodynamics, and 

kinetics (built-in analysis via lumped MSM’s)

1.  Sample metastable states: 

automatic algorithms to adaptively sample

and identify metastable states

via a kinetic clustering mechanism

(avoid one/low dimensional R.C.’s)
3 helix bundle

also see the work of:      Caflisch, Chodera, Deuflhard, Dill, Hummer, 

Noé, Pande, Pitera, Singhal-Hinrichs, Roux, Schütte, Swope, Weber 

2.  Build transition matrix: 

use MD to sample transition probabilities 

(ideally adaptively -- which allows MSMs to 

be more efficient than very long runs)

http://simtk.org/home/msmbuilder
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Adaptive Sampling – Parallel + Resilient

start:  run some initial simulationsstart:  run some initial simulations

cluster data into microstatescluster data into microstates

lump microstates into macrostateslump microstates into macrostates

calculate state’s contribution to uncertaintycalculate state’s contribution to uncertainty

start new simulations ~ uncertaintystart new simulations ~ uncertainty

Repeat until desired 

uncertainty.

Can overlap cluster 

steps with FAH!

Repeat until desired 

uncertainty.

Can overlap cluster 

steps with FAH!

final result:  well-constructed MSMfinal result:  well-constructed MSM

(Singhal, Bowman, Haque, Pande)

FAH
(~day)

cluster
(~hour)

wall clock

cluster
(~hour)

cluster
(~minute)

FAH
(~day)

Tightly-coupled parallelism

Loosely-coupled parallelism

http://simtk.org/home/msmbuilder



Adaptive Sampling – Parallel + Resilient

start:  run some initial simulationsstart:  run some initial simulations

MSM/adaptive 

sampling analysis

MSM/adaptive 

sampling analysis
Iterative simulation minimizes 

state/transition uncertainty

Iterative simulation minimizes 

state/transition uncertainty

result:  well-constructed MSMresult:  well-constructed MSM

(Singhal, Bowman, Haque, Pande)

Tightly-coupled parallelismLoosely-coupled parallelism

http://simtk.org/home/msmbuilder



Folding@home – Parallel + Resilient

(Pande Group)

Tightly-coupled parallelismLoosely-coupled parallelism

http://folding.stanford.edu



Figure from 

Dobson, et al, Nature

“Real” Chemistry: States and Rates



MSMs let us compute states and rates

States defined

kinetically –

thermodynamically 

relevant!

http://simtk.org/home/msmbuilder



Chemical Biology - Methods

• Experimental assays: expensive, labor-
intensive

• Physical simulation: expensive, slow, 
questionably accurate

• Is there an alternative to giant molecular 
dynamics simulations for large-scale/high-
throughput work?



Chemical Databases

• A modern trend – giant public databases of chemical 
assay data

– NCBI PubChem: 34,340 assays; 965,730 compounds

– EBI ChEMBLdb: 8,054 targets; 600,625 compounds

• Companies releasing their internal databases

– GlaxoSmithKline: Gamo et al. Thousands of chemical 
starting points for antimalarial lead identification. Nature

465, 305-310 (20 May 2010).

• Let’s learn from this data and make predictions –
chemical informatics or data mining!



The Cheminformatics Gap

Computational analysis has not kept up with growth in 

chemical databases: the cheminformatics gap.



Not just a linear gap

• Chemical similarity comparison is a common 

bottleneck in chemical algorithms

• How many similarities for N molecules?

– Virtual screening, k-means clustering: O(N)

– Hierarchical clustering, network analysis: O(N2)

– LM hierarchical: O(N3)

The gap is not just 10x-100x…

more like 100x – 1 million x!



The storage challenge

• Making an O(N2) method faster is not enough:

• Computing on existing-scale datasets requires 

entire datacenters’ worth of storage.

10K PB30K yr1B mols

1 PB3 yr10M mols

1 TB1 day100K mols

1 GB1 min10K mols

1 kB1 ms10 mols

Storage neededCPU timeProblem size



A Modest Proposal

• Let’s calculate all the pairwise similarities for 
compounds in PubChem3D (N = 17M) based on 3D 
shape and 2D chemical similarity

• 3D: OpenEye ROCS: 150/sec/core = 30K cpu-yr

2D: OpenEye LINGO: 1M/sec/core = 4.5 cpu-yr

– 1 PB per matrix



A Modest Proposal

• Let’s calculate all the pairwise similarities for 
compounds in PubChem3D (N = 17M) based on 3D 
shape and 2D chemical similarity

• 3D: OpenEye ROCS: 150/sec/core = 1.5 Jaguar-mth

2D: OpenEye LINGO: 1M/sec/core = 30 Jaguar-sec

– 13% of NCCS HPSS per matrix

• Let’s accelerate this with heterogeneous HPC!

– High speed + high efficiency

– Reliability? (See MemtestG80)



PAPER: GPU-Accelerated 3D Sim

• Use GPUs to accelerate 3D shape-only comparison: 

100x speedup

http://simtk.org/home/paper

Haque IS and Pande VS. J. Comput. Chem., 2010, 31(1), pp 117-132



SIML: GPU-Accelerated 2D Sim

• 2D similarity has poor internal parallelism

• Invented new GPU-appropriate algorithm for LINGO

• Run one LINGO per compute unit (>200/GPU)

http://simtk.org/home/siml

Haque IS, Pande VS, Walters WP. J. Chem. Inf. Model., 2010 50(4), pp 560-564
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A Humble Proposal

• Let’s calculate all the pairwise similarities for 

compounds in PubChem3D (N = 17M) based on 3D 

shape and 2D chemical similarity

• 3D: PAPER: 15K/sec/gpu   = ~ 300 gpu-years

2D: SIML:    91M/sec/gpu = ~ 4 gpu-weeks

– 2D: 1 GPU is faster than reading solution from disk!

• We’re not quite there yet for 3D…



SCISSORS: Math for Fun and Profit

• Many molecular similarity methods report similarity 

as a Tanimoto score

• How can we use the mathematical structure of 

Tanimotos to gain insight into the metrics and 

calculate them faster?

Classical vector Tanimoto returns value 

in [-1/3, 1] for a pair of vectors A, B in 

terms of their inner products

Tanimoto equation can be rearranged to 

get inner product in terms of Tanimoto

and vector magnitudes

Haque IS and Pande VS. J. Chem. Inf. Model., 2010 50(6), pp1075-1088.



SCISSORS: Derivation

• Assume molecules can be represented as vectors in RN

• Simple assumptions on <A,A> and <B,B> get us <A,B>

• Given a matrix G of inner products, want matrix M with 

molecule vectors along rows

• G is real-symmetric, so use eigenvalue decomposition

Haque IS and Pande VS. J. Chem. Inf. Model., 2010 50(6), pp1075-1088.



SCISSORS: The key

• Select a small number k of molecules (k << N) to act as 

a “basis set”

• Do all-pairs comparison on basis set and decompose to 

molecule matrix M

• For each new “library” molecule x, run slow method 

only against basis set. Place inner products in a vector 

and solve for vector rep of x by least-squares:

• All-pairs: now only O(kN) slow computations!

Haque IS and Pande VS. J. Chem. Inf. Model., 2010 50(6), pp1075-1088.



Hardly Even a Request…

• 3D: Using PAPER+SCISSORS (basis size=2700) 

17M * 2700 / 15000 = 35 gpu-day +

17M * 17M / 600M      =  5  gpu-day

274,000x speedup (vs 30 000 cpu-yr)

• 2D: Using SIML

17M * 17M / 91M  = 36 gpu-day

40x speedup (vs 4.5 cpu-yr)

• Storage: 200M for SIML, 17GB for SCISSORS

33,000 x reduction (3D)

2.8M x reduction (2D)



Doing it Faster and Better

• Intensive reparameterization of chemical similarity 

“forcefields”: 14-20D derivative-free optimization

• High-speed similarity allows exhaustive calculation of 

all similarities -> explicit significance estimates

• Future work: integration of biological data into 

similarity networks to make predictions
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• Statistical approach extends scalability and resilience 

of MD to the exascale and unifies simulation and 

analysis

• New hardware and software technologies allow us to 

bridge the cheminformatics gap and scale analysis to 

multi-million molecule datasets

• Large-scale methods enable statistically-rigorous

analysis and new insights into chemical space

ihaque@cs.stanford.edu
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