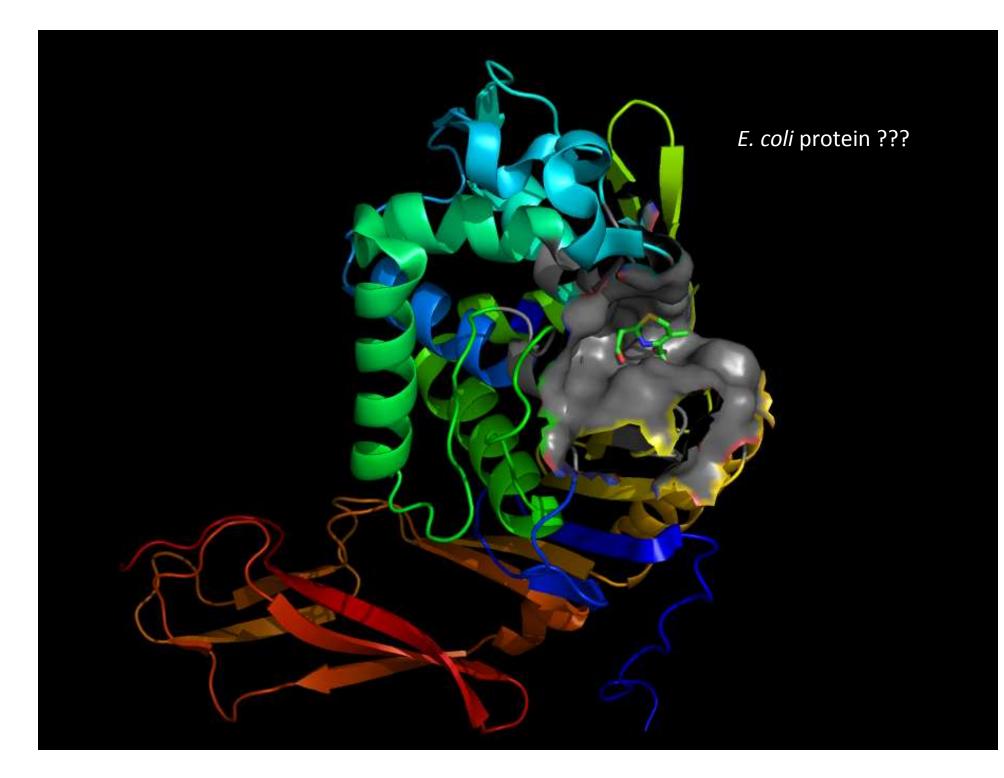
Hybrid Vigor

Using Heterogeneous HPC to Accelerate Chemical Biology

Imran Haque Department of Computer Science Stanford University

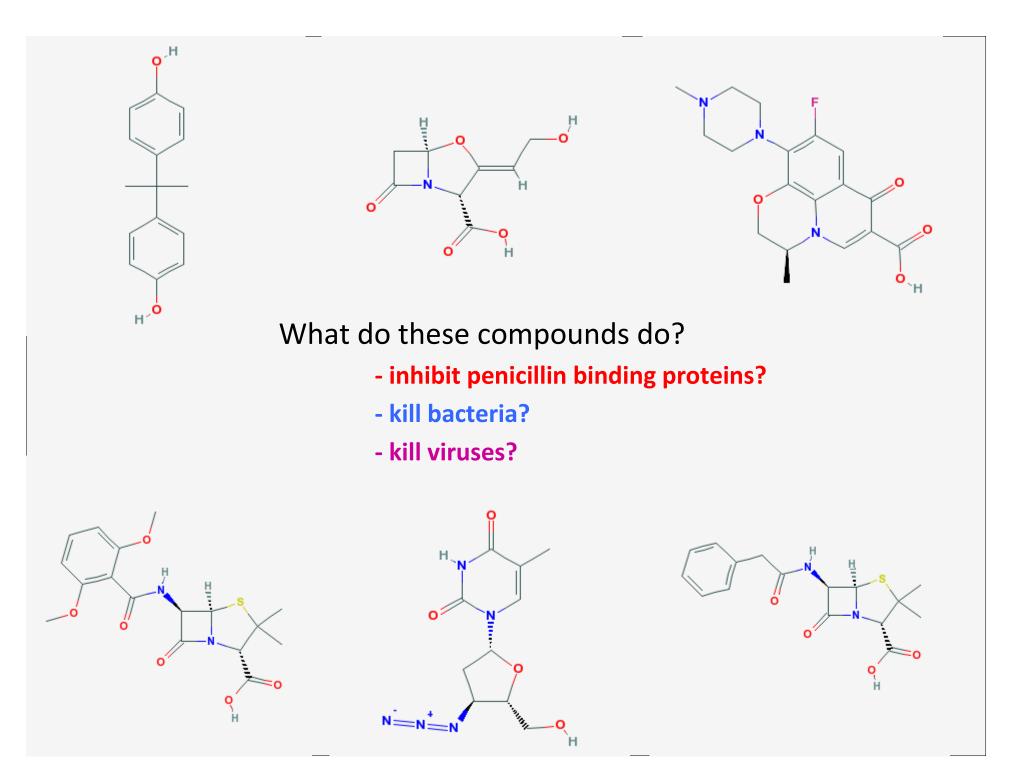
http://cs.stanford.edu/people/ihaque http://folding.stanford.edu

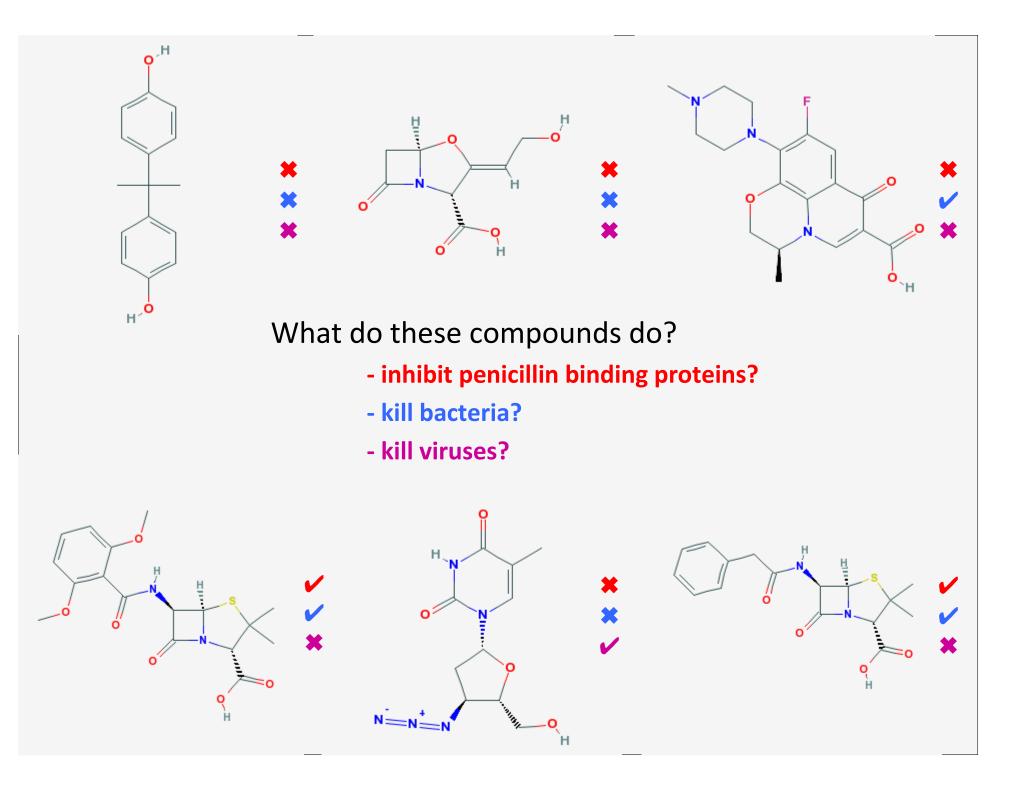
Bio-Molecular Simulations on Future Computing Architectures @ ORNL, 17 Sep 2010

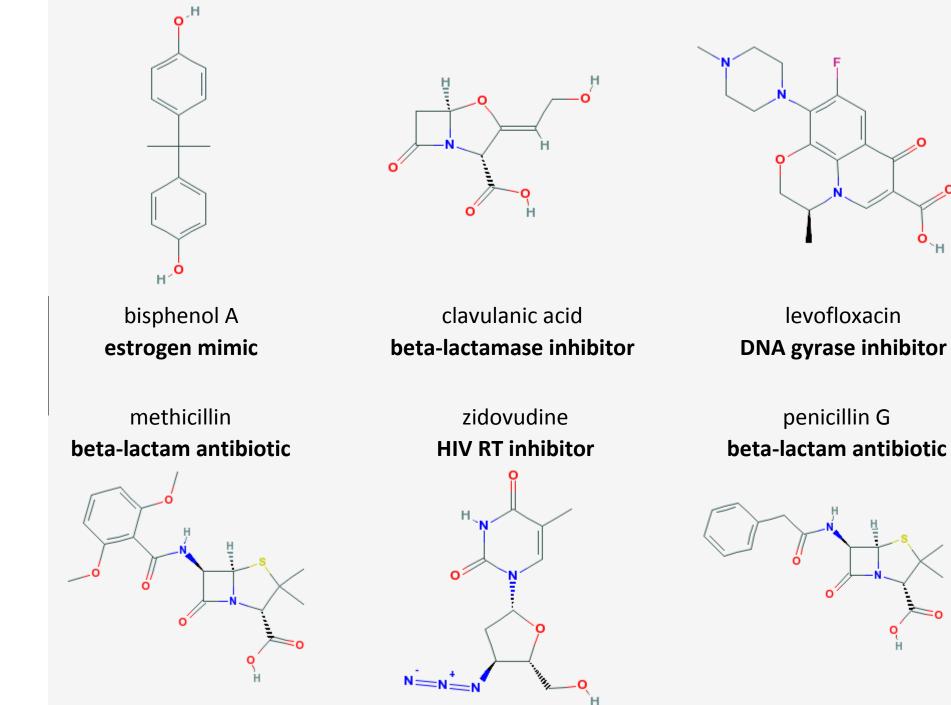


E. coli penicillin binding protein 5

Which small molecules will a given protein bind?







levofloxacin

ю._Н

DNA gyrase inhibitor

Chemical Biology - Methods

- Experimental assays: expensive, laborintensive
- Physical simulation?

OpenMM – High Performance

Molecule	# atoms	ns/day	speedup*	GFLOPS (GPU)	GFLOPS (x86)
fip35	544	576	128x	311	657
villin	582	529	136x	328	692
lambda	1254	202	255x	547	1153
α-spectrin	5078	17	735x	805	1702

(*comparing a GTX280 to a single core of a 3GHz Core 2 Duo using the AMBER code; Fermi is ~2x faster!)

OpenMM – Rapid Development

Interface to Python

- 8 lines to a customizable, high performance MD code
- tweak to your heart's content, but keep high performance

- Custom Force classes
 - code in equations, rather than CUDA/OpenCL, with high performance

```
map<string, CustomFunction*> functions;
functions["fn"] = new MyCustomFunction();
ParsedExpression exp = Parser::parse("cos(x)*fn(x/2)",functions);
```

Limitations of traditional parallel MD

- Parallelism by spatial decomposition
 - each CPU gets assigned atoms
 - calculates the force for "its" atoms
 - communication between boxes
- Challenge
 - how to break up the problem for billions of processors when you only have millions of atoms?
 - What do you do when you only have thousands?!?!?
- What about scaling to billions of processors?
 - <u>can't have # processors > # atoms</u>
 - machine may not even run long enough to checkpoint/restart

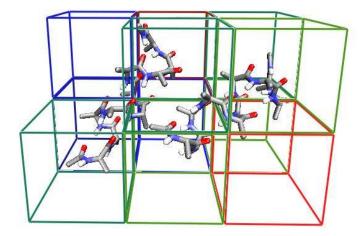
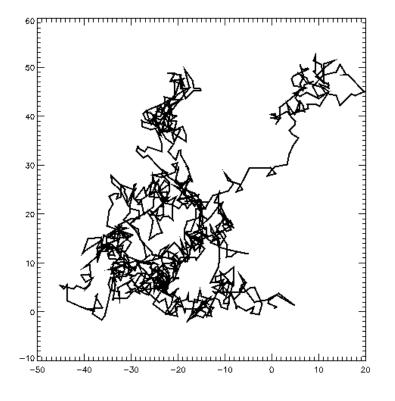
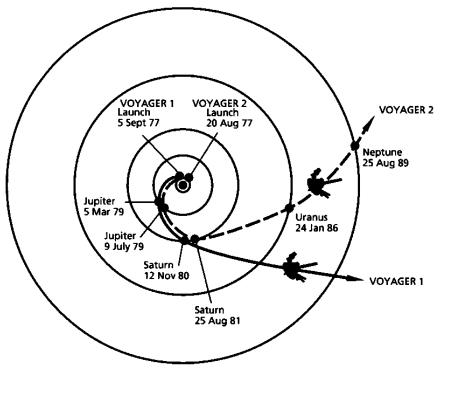


figure from http://www.ks.uiuc.edu/Research/Algorithms/

Anton from D. E. Shaw

How to think of MD simulations





YES!

No

http://simtk.org/home/msmbuilder

A statistical approach to simulation

 Sample metastable states:
 automatic algorithms to <u>adaptively sample</u> and <u>identify metastable states</u>
 via a <u>kinetic clustering mechanism</u> (avoid one/low dimensional R.C.'s)

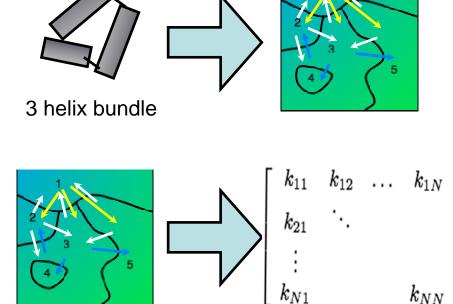
2. Build transition matrix:

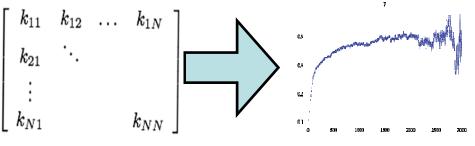
use MD to sample transition probabilities (ideally adaptively -- which allows MSMs to be more efficient than very long runs)

3. Use transition matrix:

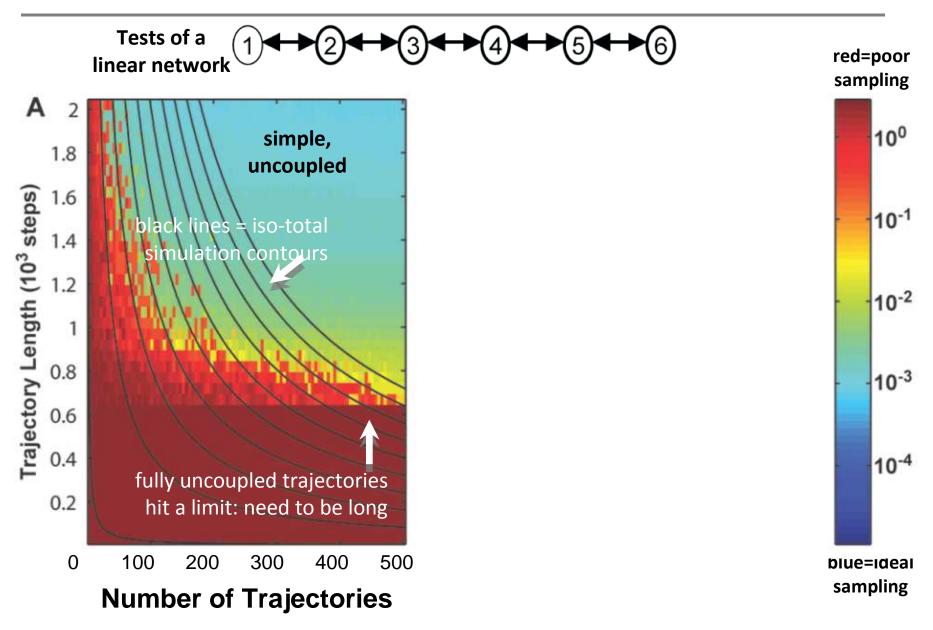
transition matrix contains everything to predict structure, thermodynamics, and kinetics (built-in analysis via lumped MSM's) $\begin{bmatrix} k_{21} \\ \vdots \\ k_{N1} \end{bmatrix}$

> also see the work of: Caflisch, Chodera, Deuflhard, Dill, Hummer, Noé, Pande, Pitera, Singhal-Hinrichs, Roux, Schütte, Swope, Weber

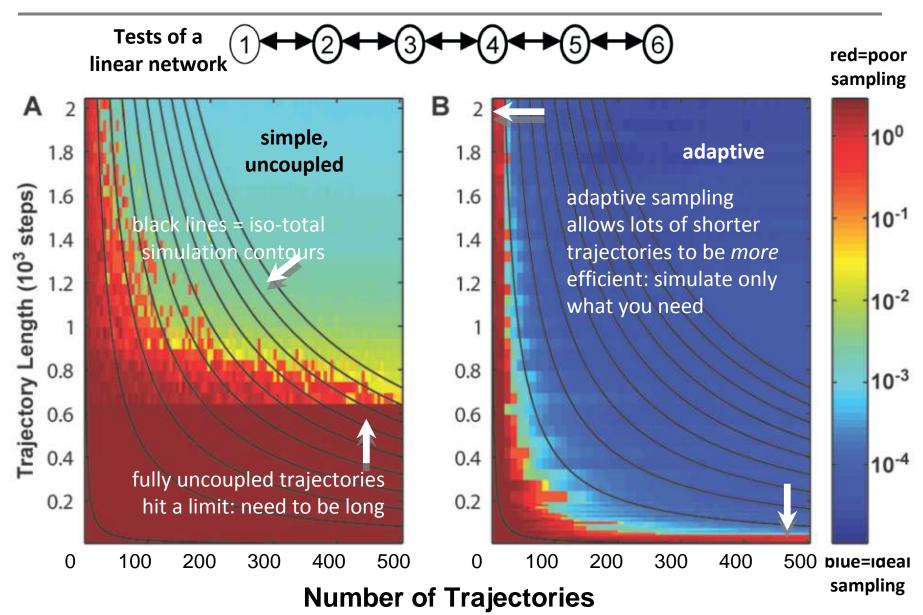




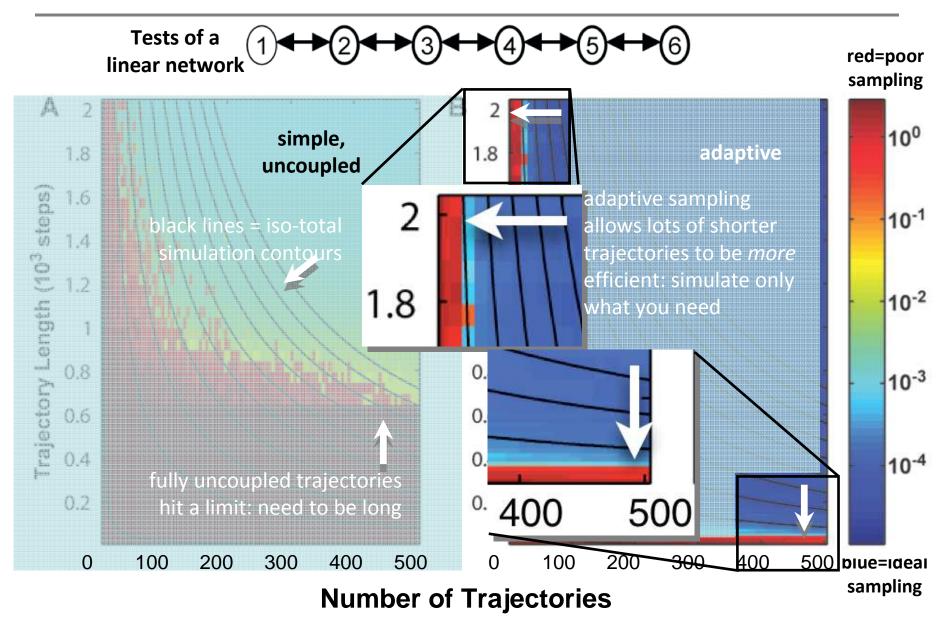
Shorter trajectories can be more efficient



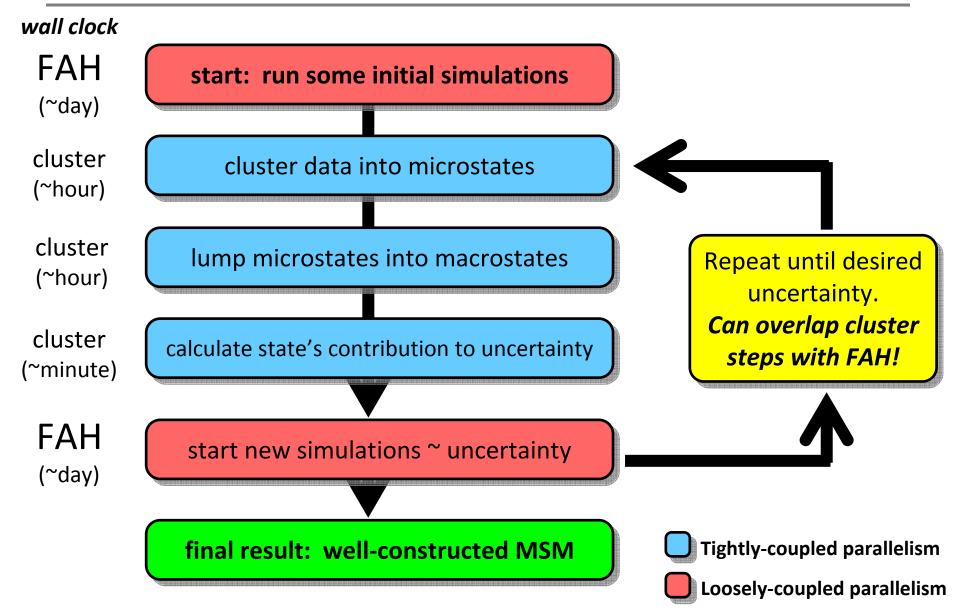
Shorter trajectories can be more efficient



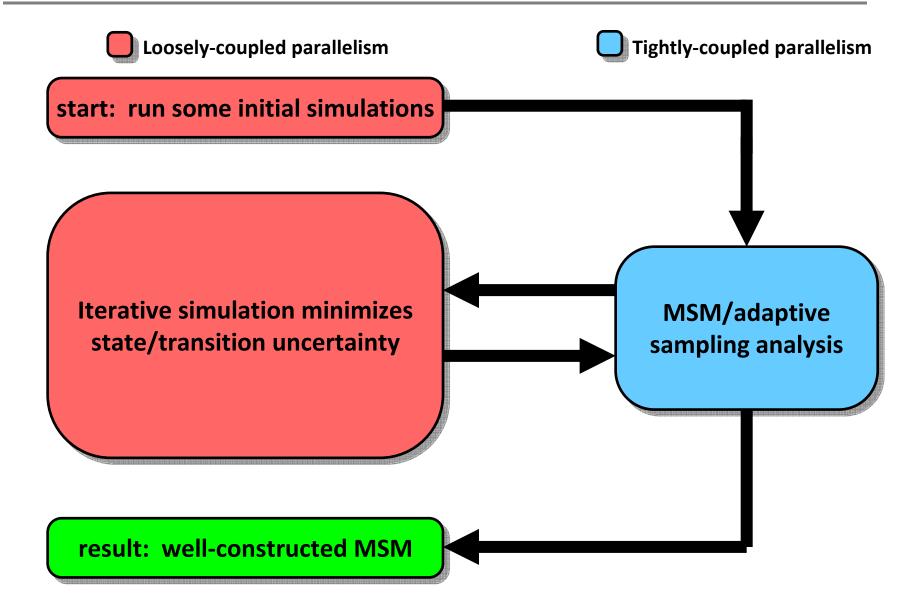
Shorter trajectories can be more efficient



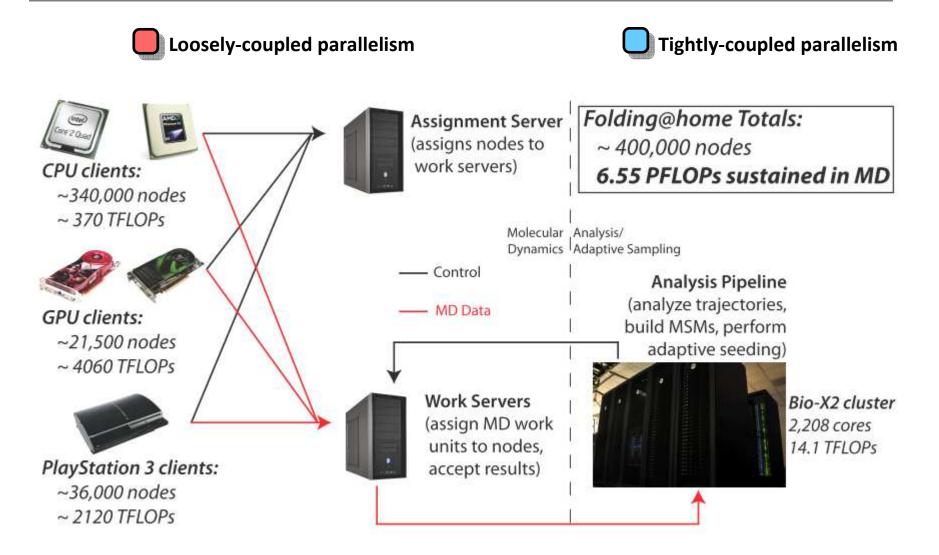
Adaptive Sampling – Parallel + Resilient



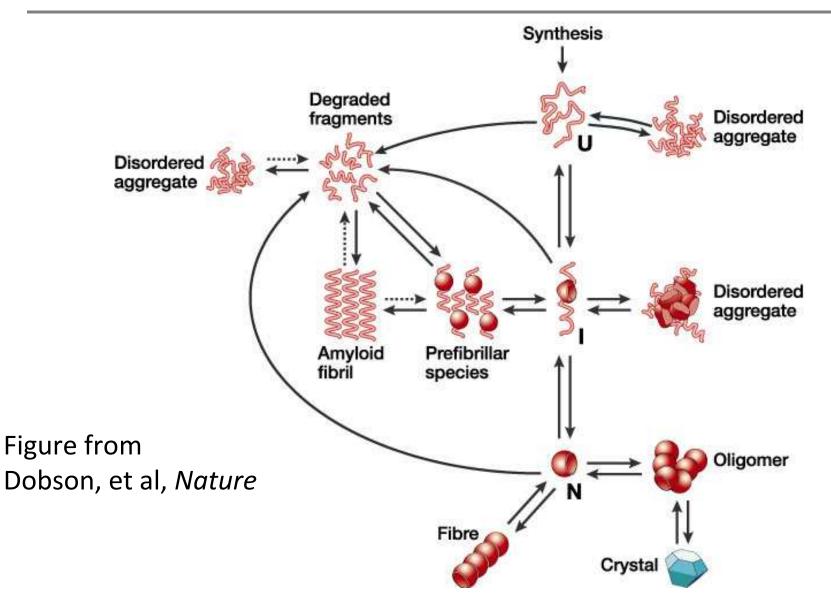
Adaptive Sampling – Parallel + Resilient



Folding@home – Parallel + Resilient

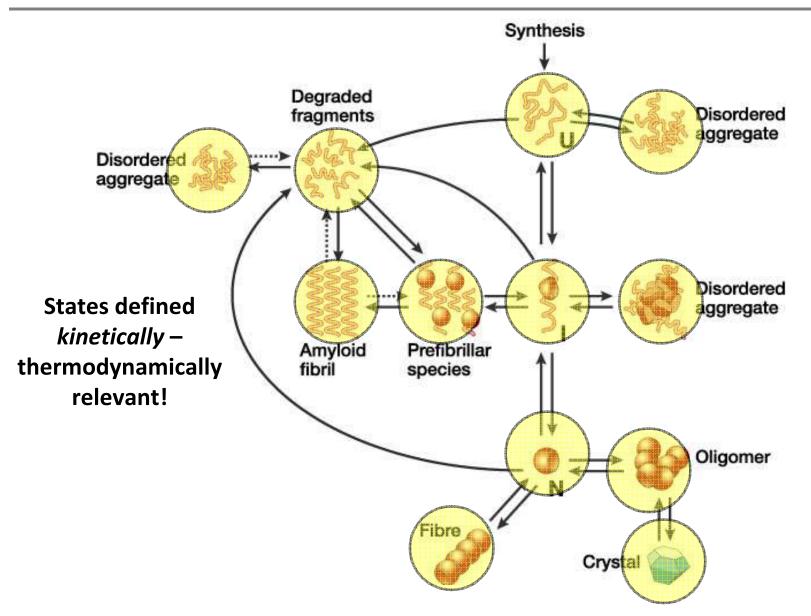


"Real" Chemistry: States and Rates



http://simtk.org/home/msmbuilder

MSMs let us compute states and rates



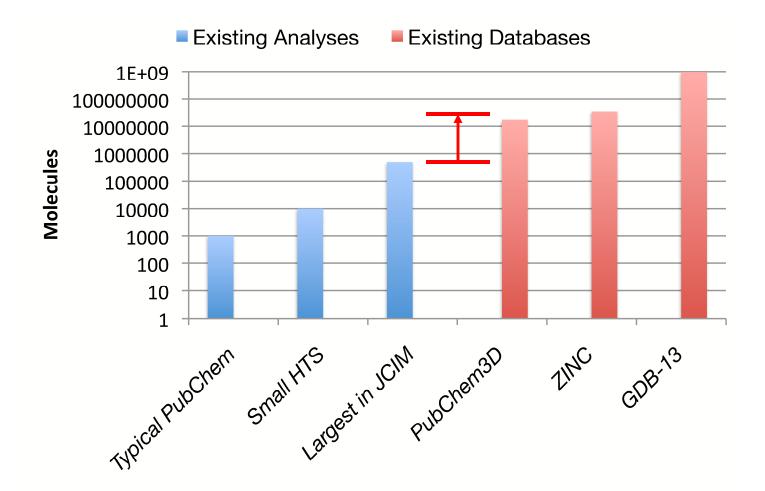
Chemical Biology - Methods

- Experimental assays: expensive, laborintensive
- Physical simulation: expensive, slow, questionably accurate
- Is there an alternative to giant molecular dynamics simulations for large-scale/highthroughput work?

Chemical Databases

- A modern trend giant public databases of chemical assay data
 - NCBI PubChem: 34,340 assays; 965,730 compounds
 - EBI ChEMBLdb: 8,054 targets; 600,625 compounds
- Companies releasing their internal databases
 - GlaxoSmithKline: Gamo et al. <u>Thousands of chemical</u> <u>starting points for antimalarial lead identification</u>. *Nature* 465, 305-310 (20 May 2010).
- Let's learn from this data and make predictions chemical informatics or data mining!

The Cheminformatics Gap



Computational analysis has not kept up with growth in chemical databases: the **cheminformatics gap**.

Not just a linear gap

- Chemical similarity comparison is a common bottleneck in chemical algorithms
- How many similarities for N molecules?
 - Virtual screening, k-means clustering: O(N)
 - Hierarchical clustering, network analysis: O(N²)
 - LM hierarchical: O(N³)

The gap is not just 10x-100x... more like 100x – 1 million x!

The storage challenge

• Making an O(N²) method faster is not enough:

Problem size	CPU time	Storage needed	
10 mols	1 ms	1 kB	
10K mols	1 min	1 GB	
100K mols	1 day	1 TB	
10M mols	3 yr	1 PB	
1B mols	30K yr	10K PB	

• Computing on existing-scale datasets requires entire datacenters' worth of storage.

A Modest Proposal

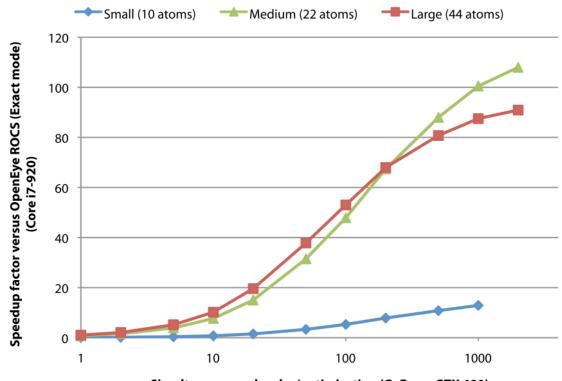
- Let's calculate all the pairwise similarities for compounds in PubChem3D (N = 17M) based on 3D shape and 2D chemical similarity
- 3D: OpenEye ROCS: 150/sec/core = 30K cpu-yr
 2D: OpenEye LINGO: 1M/sec/core = 4.5 cpu-yr
 - 1 PB per matrix

A Modest Proposal

- Let's calculate all the pairwise similarities for compounds in PubChem3D (N = 17M) based on 3D shape and 2D chemical similarity
- 3D: OpenEye ROCS: 150/sec/core = 1.5 Jaguar-mth
 2D: OpenEye LINGO: 1M/sec/core = 30 Jaguar-sec
 - 13% of NCCS HPSS per matrix
- Let's accelerate this with **heterogeneous** HPC!
 - High speed + high efficiency
 - Reliability? (See MemtestG80)

PAPER: GPU-Accelerated 3D Sim

 Use GPUs to accelerate 3D shape-only comparison: 100x speedup



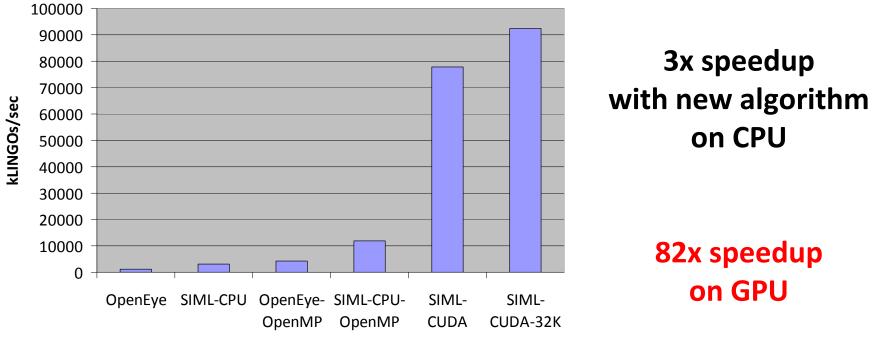
Simultaneous molecules/optimization (GeForce GTX 480)

http://simtk.org/home/paper

Haque IS and Pande VS. J. Comput. Chem., 2010, 31(1), pp 117-132

SIML: GPU-Accelerated 2D Sim

- 2D similarity has poor internal parallelism
- Invented new GPU-appropriate algorithm for LINGO
- Run one LINGO per compute unit (>200/GPU)



http://simtk.org/home/siml

Haque IS, Pande VS, Walters WP. J. Chem. Inf. Model., 2010 50(4), pp 560-564

A Humble Proposal

- Let's calculate all the pairwise similarities for compounds in PubChem3D (N = 17M) based on 3D shape and 2D chemical similarity
- 3D: PAPER: 15K/sec/gpu = ~ 300 gpu-years
 2D: SIML: 91M/sec/gpu = ~ 4 gpu-weeks
 - 2D: 1 GPU is faster than reading solution from disk!
- We're not quite there yet for 3D...

SCISSORS: Math for Fun and Profit

- Many molecular similarity methods report similarity as a Tanimoto score
- How can we use the mathematical structure of Tanimotos to gain insight into the metrics and calculate them faster?

Classical vector Tanimoto returns value in [-1/3, 1] for a pair of vectors A, B in terms of their inner products

Tanimoto equation can be rearranged to get inner product in terms of Tanimoto and vector magnitudes

$$T_{AB} = \frac{\langle A, B \rangle}{\langle A, A \rangle + \langle B, B \rangle - \langle A, B \rangle}$$

$$\langle A,B\rangle = \frac{T_{AB}}{1+T_{AB}} \left(\langle A,A\rangle + \langle B,B\rangle \right)$$

Haque IS and Pande VS. J. Chem. Inf. Model., 2010 50(6), pp1075-1088.

SCISSORS: Derivation

- Assume molecules can be represented as vectors in ${\bf R}^{\rm N}$
- Simple assumptions on <A,A> and <B,B> get us <A,B>

$$\langle A, B \rangle = \frac{2 T_{AB}}{1 + T_{AB}}$$

• Given a matrix G of inner products, want matrix M with molecule vectors along rows

$$MM^T = G$$

• G is real-symmetric, so use eigenvalue decomposition

$$\begin{split} G &= M M^T = V D V^T \\ M &= V D^{\frac{1}{2}} \end{split}$$

Haque IS and Pande VS. J. Chem. Inf. Model., 2010 50(6), pp1075-1088.

SCISSORS: The key

- Select a small number k of molecules (k << N) to act as a "basis set"
- Do all-pairs comparison on basis set and decompose to molecule matrix M
- For each new "library" molecule x, run slow method only against basis set. Place inner products in a vector and solve for vector rep of x by least-squares:

$$M\vec{x} = T$$

• All-pairs: now only O(**kN**) slow computations!

Hardly Even a Request...

- 3D: Using PAPER+SCISSORS (basis size=2700) 17M * 2700 / 15000 = 35 gpu-day + 17M * 17M / 600M = 5 gpu-day 274,000x speedup (vs 30 000 cpu-yr)
- 2D: Using SIML

17M * 17M / 91M = 36 gpu-day **40x speedup** (vs 4.5 cpu-yr)

 Storage: 200M for SIML, 17GB for SCISSORS 33,000 x reduction (3D) 2.8M x reduction (2D)

Doing it Faster and Better

- Intensive reparameterization of chemical similarity "forcefields": 14-20D derivative-free optimization
- High-speed similarity allows exhaustive calculation of all similarities -> explicit significance estimates
- Future work: integration of biological data into similarity networks to make predictions

Acknowledgments

Stanford

- Vijay Pande (PI)
- Paul Novick
- Greg Bowman
- Kyle Beauchamp
- Randy Radmer
- Mark Friedrichs
- Peter Eastman

Collaborators

- Del Lucent
- Pat Walters
- Kim Branson
- Erik Lindahl
- Anthony Nicholls
- Brian Cole
- Roger Sayle

Conclusions

- Statistical approach extends scalability and resilience of MD to the exascale and unifies simulation and analysis
- New hardware and software technologies allow us to bridge the cheminformatics gap and scale analysis to multi-million molecule datasets
- Large-scale methods enable **statistically-rigorous** analysis and new insights into chemical space

ihaque@cs.stanford.edu