Hard Data on Soft Errors

A Global-scale Survey of GPGPU Memory Soft Error Rates

Imran Haque
Department of Computer Science
Stanford University

http://cs.stanford.edu/people/ihaque

http://folding.stanford.edu

ihaque@cs.stanford.edu

Motivation

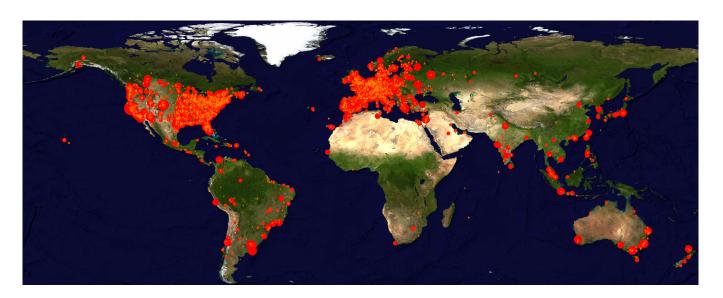
- GPUs originate in **error-insensitive** consumer graphics
- Neither ECC nor parity on most* graphics memory

 How suitable is the installed base of consumer GPUs (and consumer GPU-derived professional hardware!)
 for error-sensitive general purpose computing?

* of which, more later

Why would a comp bio group care?

CUDA-Enabled Package


Folding@home (molecular dynamics)

OpenMM (molecular dynamics)

PAPER (3-D chemical similarity)

SIML (1-D chemical similarity)

Native TFLOPS*	x86 TFLOPS*	Active CPUs	Total CPUs
211	211	221349	2913112
4	4	4836	132350
25	25	7904	105536
49	49	28932	445150
1199	1265	11750	101032
2242	4731	18840	157865
1086	2291	38502	876947
4816	8576	332113	4731992
	211 4 25 49 1199 2242 1086	211 211 4 4 4 25 25 49 49 1199 1265 2242 4731 1086 2291	211 211 221349 4 4 4836 25 25 7904 49 49 28932 1199 1265 11750 2242 4731 18840 1086 2291 38502

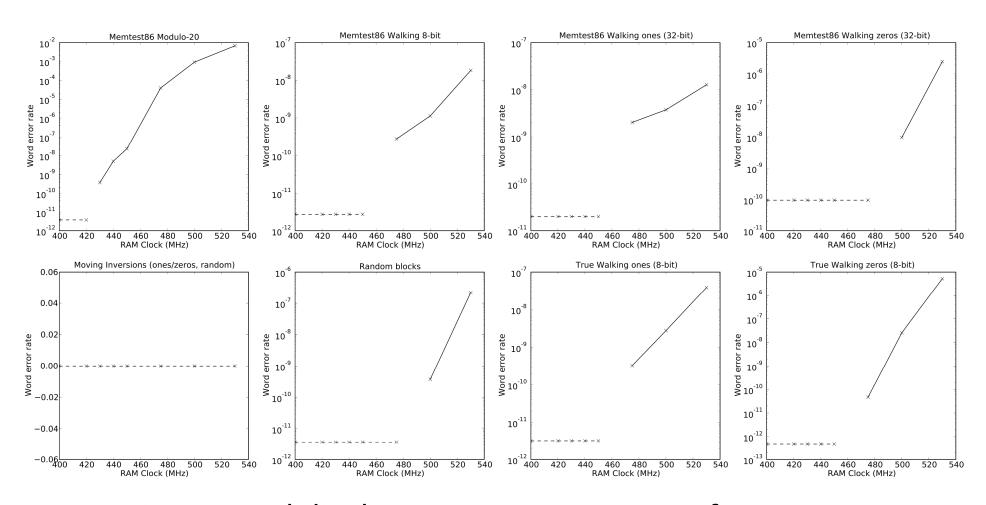
We've written a lot of CUDA-enabled software, and we run it on a lot of GPUs.

Methodology – MemtestG80

- Custom software, based on Memtest86 for x86 PCs
- Open source (LGPL), available at https://simtk.org/home/memtest
- Variety of test patterns:
 - Constant (ones, zeros, random)
 - Walking ones and zeros (8-bit, 32-bit)
 - Random words (on-GPU parallel PRNG)
 - Modulo-20 pattern sensitivity
 - Novel iterated-LCG integer logic tests
 - Bit fade

MemtestG80 – Validation

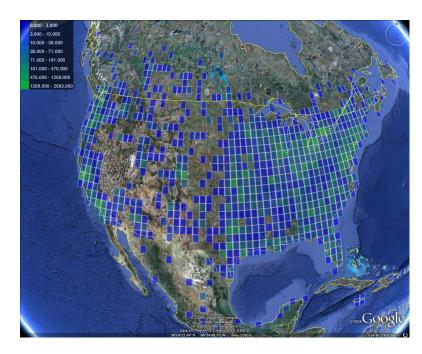
- Negative control verify that it doesn't throw spurious errors in "known-good" situations
 - Known-good PSUs, machines located in air-conditioned environments.

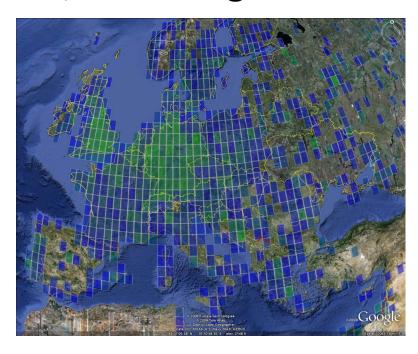

- 93,000 iterations on 700 MiB on GeForce 8800GTX
- >180,000 iters on 320MiB on each of 8 x Tesla C870

No errors ever detected.

MemtestG80 – Validation

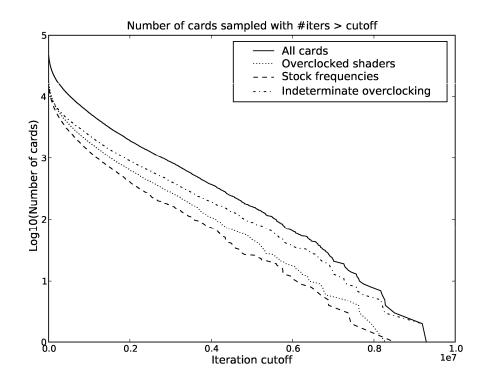
- Positive control verify that it does throw errors in situations that generate errors
- Overclocking generates memory errors (violation of timing constraints; loss of signal integrity)
- Tested GeForce 9500GT (memory clock = 400MHz) at 400, 420, 430, 440, 450, 475, 500, 530 MHz
 - 20 iterations for each frequency (only 10 @ 530MHz)
 - Cooled down and reset to 400MHz between tests


MemtestG80 - Validation



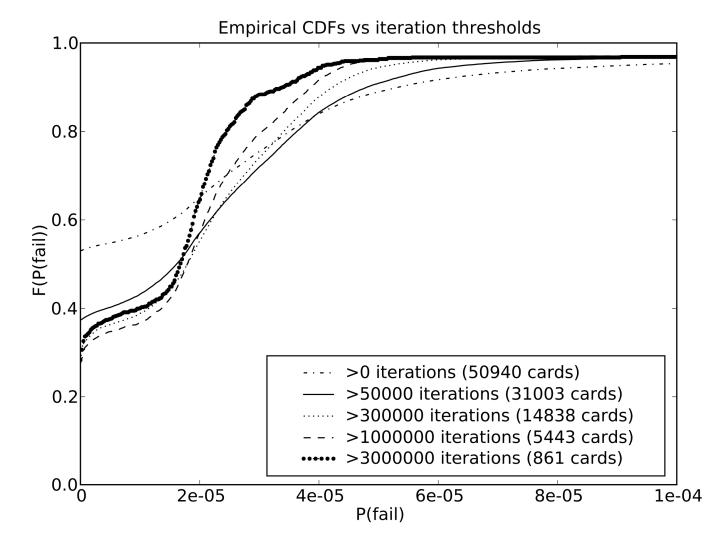
Positive control displays pattern sensitivity of memory tests

Methodology – Folding@home


- Expect a low error rate and environment sensitivity,
 so must sample many cards in diverse environments
- Ran for ~7 months over 50,000+ NVIDIA GPUs on Folding@home (>840 TB-hr of testing)
- >97% of data tested 64 MiB RAM, k=512 logic LCG

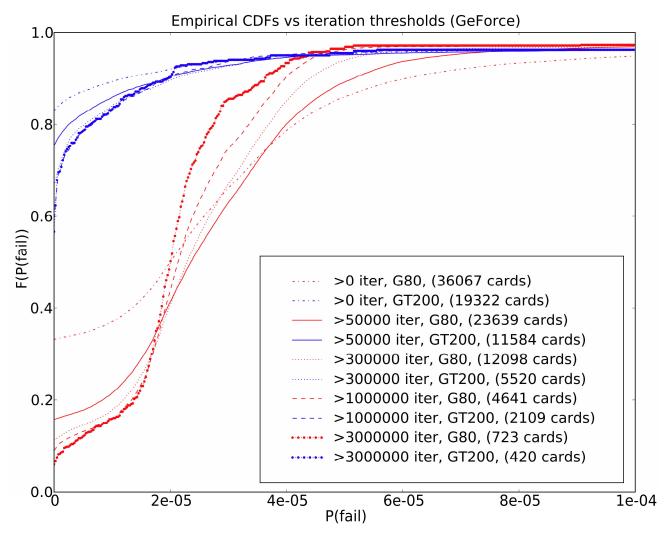
Methodology – Folding@home

- We achieve good sampling over the NVIDIA consumer product line, and a few pro cards as well.
- Sampled similar numbers of stock and (shader) overclocked boards

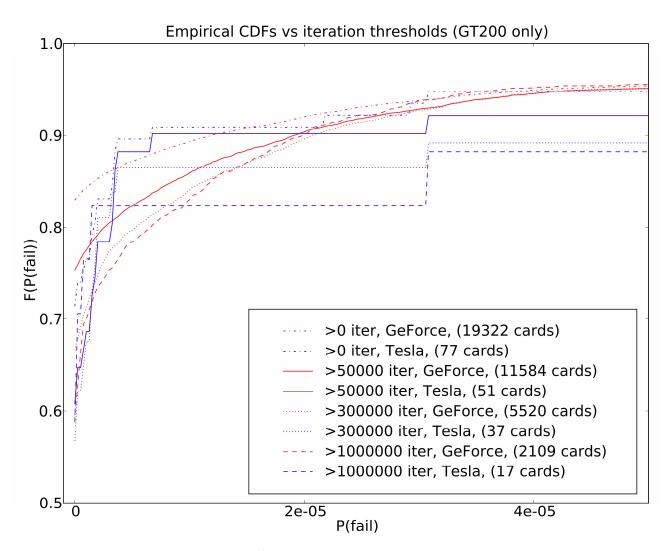


Card Family	# cards \geq 300,000 iter.
Consumer graphics cards	17648 total
GeForce GTX	5520
GeForce 8800	5478
GeForce 9800/GTS	4923
GeForce 9600	1516
Other Desktop GeForce	181
Mobile GeForce	30
Professional graphics cards	89 total
Quadro FX	83
Quadroplex 2200	6
Dedicated GPGPU cards	37 total
Tesla T10	27
Tesla C1060	10

Results

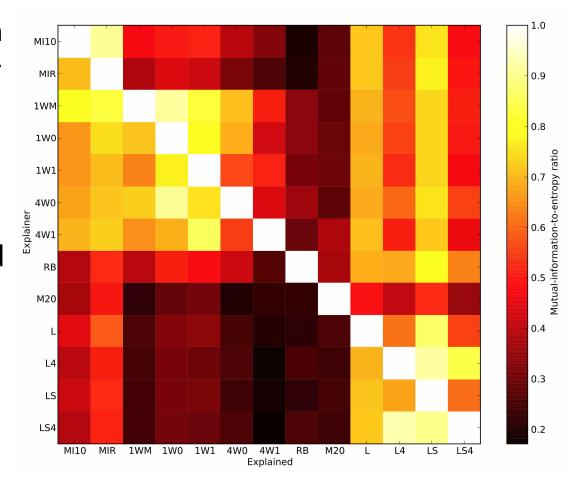

- We call a failure if any test in a MemtestG80 iteration failed (ignore exact WER)
- Model: each card has its own probability of error (test failure) = P_f . Cards are drawn iid from an underlying distribution $P(P_f)$
- What is the distribution of failure probabilities?

Results


Population of failing cards has a mode around $P_f = 2x10^{-5} = ^4 failures/week$

Analysis – Breakdown by Architecture

GT200 has typical $P_f = 2.2 \times 10^{-6}$ (one-tenth of G80!) Both archs. show monotonic decline in zero-error populations.


Analysis – GeForce vs Tesla

Tesla traces are rougher from poorer sampling, but appear to represent same error distribution as GeForce data.

Analysis – Test Mutual Information

- Consider mutual information between tests as a nonlinear covariance measure.
- Mod-20 test is unique
- Random blocks test is a good logic workout
- Logic tests measure a failure mode distinct from memory tests

What about "Fermi"?

- NVIDIA's new Fermi (GF100) architecture adds SECDED ECC (disabled in consumer GeForce line?), GDDR5 memory bus ECC, and L1/L2 caches
- Does Fermi redesign affect architectural vulnerability (error rate or error type)?
 - G80/GT200 typically failed on Mod-20 test first
- FAH test does not run (yet) on Fermi; used standalone MemtestG80 w/reporting capabilities
 - In-house: 1 GeForce GTX 480, 1 Tesla C2050
 - Public: 44 GeForce GTX 470, 43 GeForce GTX 480

Results – Fermi

- Tesla: no app-level errors seen, at least one doublebit error reported by ECC
- **GeForce**: most cards exhibited memory errors observed in-house $P_f = 1.6 \times 10^{-5}$
 - Non-overclocked cards vulnerable to 8-bit walking zeros
 - RAM-overclocked first failed 8- or 32-bit walking zeros
 - Core/shader-overclocked failed random blocks
- Very different vulnerabilities than G80/GT200 but problems still exist!

Acknowledgments

Pande lab, Stanford University

Simbios (NIH Roadmap GM072970)

NVIDIA

Folding@home donors

Summary

- Wrote MemtestG80 to test for GPU memory errors.
- Verified proper operation of MemtestG80 with negative and positive control tests.
- Ran MemtestG80 on over 50,000 GPUs, 840+ TB-hr
- 2/3 of tested GPUs exhibit pattern-sensitive soft errors
- Architecture makes a difference: GT200 is much more reliable than G80; GF100 introduces a new set of vulnerabilities
- GT200 Tesla cards on FAH performed similarly to GeForces (but GF100 ECC seems to make a difference on Tesla C20xx)

Conclusions

 Sufficiently high hard error rate (2%) that explicit testing is warranted.

 Some form of ECC appears to be crucial for reliable GPGPU computation.

https://simtk.org/home/memtest

ihaque@cs.stanford.edu